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We explore how rice farmers adjust their farm management practices in response to extreme
weather events and determine whether their adjustments affect the mean, risk, and downside risk
of rice yield. Based on a survey of 1,653 rice farmers in China, our econometric analyses show
that the severity of drought and flood in the study areas significantly increases the risk and down-
side risk of rice yield. The applied farm management measures respond to severe drought and
flood and can be considered as adaptation to climate change, an issue often ignored in previous
studies. We model adaptation and its impact on rice yield for adapters and non-adapters. Utilizing
a moment-based approach, we show that adaptation through farm management measures signif-
icantly increases rice yield and reduces the risk and downside risk of rice yield. Several policies,
including scaling up the cost-effective farm management adaptation and providing public services
related to natural disasters, are recommended to improve adaptive capacity of farmers, particular
the poor, in response to extreme events.
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Overcoming the challenge of more frequent
and extreme weather events has captured
much attention from researchers (Howden
et al. 2007; IPCC 2014). Forecasts show that
the total area suffering from drought glob-
ally will increase between 15–44% by the
end of the twenty-first century (IPCC 2012).
The international community has called for
incorporating climate change adaptation into
national development plans (IPCC 2014;
World Bank 2010). This is especially urgent
for farmers in developing countries who are
expected to bear the brunt of climate vari-
ability impacts (Seo and Mendelsohn 2008).
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In China, the annual average crop area suf-
fering from drought has increased by nearly
120% since the 1950s, and the frequency of
flood events has also increased (MWR 2012).
China’s government issued a national pro-
gram at the end of 2013 to adapt to climate
change, which shows that adaptation initiated
by the government (NDRC 2013) is gaining
momentum.

Although several studies of farmers’ adap-
tation to climate change exist (Chen, Wang,
and Huang 2014; Deressa et al. 2009; Seo
and Mendelsohn 2008), there is inadequate
analysis on the effectiveness of farm manage-
ment and other adaptation practices; most
studies have analyzed the determinants of
adaptation decisions. For example, a survey
in Ethiopia (Deressa et al. 2009) found that
household characteristics and access to exten-
sions influence farmers’ adaptation decisions.
Empirical studies in China found that farm
characteristics and local government poli-
cies influence farmers’ adaptation decisions
(Chen, Wang, and Huang 2014; Wang, Huang,
and Wang 2014). Exceptions include studies
by Yesuf et al. (2008) and Di Falco, Veronesi,
and Yesuf (2011). These studies treated
farmer applications as adaptation measures
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and analyzed the impact of adaptation on
crop yield. Several studies have also analyzed
agricultural risk, including the mean-variance
investigation of input effects (e.g., Abedullah
and Pandey 2004; Just and Pope 1979) and
technology adoption (Foudi and Erdlenbruch
2012). However, it remains unclear whether
these applications mitigate the impact of
extreme weather events.

Importantly, the influence of adaptation on
downside risk exposure (e.g., the probability
of crop failure) remains poorly understood.
In general, downside risk refers to the risk
located in the lower tail of the payoff dis-
tribution (Kim et al. 2014). While useful
information about the risk effects of input
adjustments can be obtained from under-
standing their impact on yield variance,
analyzing the variance effect alone would
not help differentiate between unexpected
bad and good events (Di Falco and Veronesi
2014). Rising risks associated with climate
variability has encouraged research on the
role of downside risk in risk management for
crop production (Kim and Chavas 2003).

Given the severity of extreme weather
events and the potential role of farm man-
agement in mitigating risks, it is important
to identify major farm management mea-
sures related to climate change and applied
by farmers, whether these measures can be
regarded as farmers’ adaptation to climate
variability, and whether adaptation mea-
sures can lower crop yield risks and increase
the mean yield. This information is critical
to better understand farmers’ adaptation
to extreme weather events and to provide
empirical evidence for policy makers’ climate
change adaptation plans and investments.

The overall goals of this study are to
explore how rice farmers adjust their farm
management practices to extreme weather
events, and to evaluate whether their adapta-
tion reduces rice yield loss and risk, as well as
downside risk in China. Rice is the main food
staple in China, which produces nearly 30%
of the world’s total rice output (FAOSTAT
2011). Historical records in China document
that the rice yield loss resulting from drought
and flood increased at a rate of 4.6% and
3.8%, respectively, from 1951–2010 (NBSC
2012), suggesting that the potential for rice
loss due to extreme weather events is a signif-
icant concern for food security in China. To
our knowledge, no empirical study has inves-
tigated how farm management has adjusted
to extreme weather events and the effects

on the mean and risk of rice yield in China
and other Asian countries.1 The scope of this
study is limited to drought and flood events
because they are the most severe weather
events faced by China’s rice producers.

To achieve our goals, we have three specific
objectives. The first is to gain a better under-
standing of extreme weather events (drought
and flood) that affect rice production, and
how farmers respond to these events by
adjusting their farm management practices.
The second objective is to identify the factors
influencing farmers’ adaptation to extreme
weather events. Third, we aim to empirically
examine the effects of major farm manage-
ment measures, identified as adaptation to
extreme weather events, on the mean, risk,
and downside risk (skewness) of rice yield.
We approximate downside risk exposure
using the third moment of the crop yield
distribution. An increase in yield skewness
indicates a reduction in downside risk, that is,
a decrease in the probability of crop failure
(Di Falco and Chavas 2009).

We model adaptation as a selection pro-
cess and estimate a simultaneous equations
model with endogenous switching to account
for heterogeneity in the decision to adapt or
not, and to capture the differential impact
of adaptation on adapters and non-adapters.
This article differs from existing studies in
two important ways. First, by designing a
survey covering both normal and extreme
weather years in recent years in the same
counties for the same farmers, we are able to
identify farmers’ “true adaptations” for cop-
ing with the extreme weather events. To our
knowledge, nearly all existing studies are
unable to separate farmers’ responses to
climate change from their daily farm man-
agement practices. That is, many adjustments
in farm management do not necessarily
represent true adaptations (Lobell 2014).
Second, most existing studies focus on farmer
responses to the mean of climate change,
while our study focuses on farmers’ responses
to extreme weather events such as drought
and flood.

Based on a survey of 1,653 rice farmers in
China, reseeding and fixing/cleaning seedlings
are the main farm management measures
related to climate change that have been

1 To the best of our knowledge, Di Falco and Veronesi (2014)
is the only economic study that attempts to formally measure
the impact of farmer adaptation to climate change on downside
yield risk in Ethiopia.
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applied by rice farmers. The econometric
results show that to a large extent the afore-
mentioned measures used by farmers are
responses to extreme weather events such as
drought and flood, and can be regarded as
adaptation to climate variability. Moreover,
we show that these farm management mea-
sures contribute to a significant reduction in
risk and downside risk of yield. The findings
imply that adapting farm management mea-
sures at the early stage of rice production is
an important risk management tool for rice
farmers. The findings of this study have impli-
cations for the Chinese national adaptation
plan to cope with extreme weather events, as
well as for farmers’ capacity-building pro-
grams in developing countries.

In the next section, we introduce the data
used in this study. The following section illus-
trates the occurrence of extreme weather
events and farmers’ responses in the stud-
ied areas. After describing the conceptual
framework we use to examine the impact of
adaptation, we present the farm management
measures applied in response to extreme
weather events and their impact on rice yield,
focusing on the effects on the mean, vari-
ance, and skewness (downside risk) of rice
yield. The final section concludes with several
policy implications.

Data and Sampling Methods

Except for secondary data on drought and
flood discussed in the next section, all data
used in this study is from a large-scale house-
hold survey on the impact of and adaptation
to climate change on crop production con-
ducted in China in late 2012 and early 2013.
Based on regional crop production systems
and climate situations, the survey covered
nine provinces: Jilin in northeast China,
Hebei in northern China, Henan in central
China, Shandong and Jiangsu in the coastal
area of eastern China, Anhui and Jiangxi
in the inland area of eastern China, Yun-
nan in southwest China, and Guangdong in
southern China. Five surveyed provinces
have households that produced rice from
2010–2012. While these five provinces may
not fully represent China’s rice production
overall, they do cover the following types of
production: double-season dominated indica
rice (early-season rice and late-season rice)
in Guandong and Jiangxi; single-season dom-
inated indica rice (middle rice) in Yunnan;

single-season indica and japonica mixed rice
(middle rice) in Henan; and single-season
japonica rice (middle rice) in Jiangsu.

Within each province, we followed three
steps to select counties to analyze the effects
of extreme weather shocks. First, we selected
all counties that had experienced the most
severe drought or flood from 2010–2012.
According to China’s national standard for
natural disasters (CMA 2004), the severity of
a drought or flood has four categories: most
severe, severe, moderate, and small. Second,
from the counties identified in the first step,
we kept only counties that also experienced
a “normal year” in any of the three exam-
ined years.2 Crop production often faces
various weather shocks during any growing
season; therefore, the term “normal year” is
relative and describes an average year with
no more than moderate (natural disaster
level 3) weather shocks. Finally, from the
list of counties identified in step two, three
counties in each province except for Jiangxi
(10 counties) and Guangdong (6 counties)
were randomly selected for the study.3 This
sampling approach allowed us to examine
differences in the two distinct years (severe
disaster year and normal year), and we ended
up with a sample of 25 counties.

Townships and villages were selected
before we interviewed households. Within
each of the 25 selected counties, all townships
were divided into three groups based on
the condition of the agricultural production
infrastructure, and one township was ran-
domly selected from each group. The same
approach was used to select three villages

2 During our sampling, the following two cases emerged during
the previous three years (2010–2012): 1) some counties had
experienced one severe disaster year and two normal years; and
2) some counties had experienced two disaster years and one
normal year. In both cases, the rule is to select the most recent
normal and disaster years for the survey so that the difficulty
of farmers’ recall can be reduced. Based on this rule, we had
48% data in 2012, 35% in 2011, and 17% in 2010. However, we
admit that the above rule resulted in imbalances in respondents’
information recall between the normal year and the disaster year
(1:5), which may raise the concern of likely more recalling bias
for the disaster year. A positive aspect was that 70% of recalled
data for the disaster year were in 2011. In addition, we found that
farmers had no difficulty recalling crop yield, farm management
and major inputs in the disaster years of 2011 or 2010 because
they had deep impressions of what had occurred during the most
recent disaster year. Moreover, in the econometric analysis we
will include year dummies for 2010 and 2011 to control for all
systematic differences between 2010, 2011, and 2012, including
the likely bias from farmers’ recall.

3 Jiangxi and Guangdong had more counties included because
we had more funding to conduct the survey in these two provinces.
Despite having more counties in these two provinces, the sampling
approach and survey measures used are the exact same as those
applied in the other provinces.
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Table 1. Percentage of Plots Affected by Extreme Weather events (drought or flood) and
Yield Loss Reported by Farmers, 2010–2012

Plots affected Yield loss when suffered
by drought or flood (%) from drought or flood (%)

In severe In normal In severe In normal
disaster year year disaster year year

Droughta 41 16 24 23
Early rice 37 15 26 26
Middle rice 60 22 19 21
Late rice 49 20 26 22

Floodb 34 16 25 24
Early rice 44 25 30 27
Middle rice 54 19 17 21
Late rice 22 11 23 20

Note: The normalized difference for the percentages of rice plots affected by drought and by flood is 0.41 and 0.33, respectively. Superscript
aindicates a total of 1,449 observations in 12 counties, while bindicates a total of 2,305 observations in 11 counties.

from each township. Finally, we randomly
selected 10 households for face-to-face inter-
views in each sampled village. A total of
2,250 households were identified in the five
studied provinces. In each household, two
plots with grain production were randomly
selected, resulting in 4,500 plots.

Although 2,250 households were inter-
viewed, some households either did not plant
rice or only planted one rice plot. Therefore,
the final sample used in our analysis includes
1,653 households with rice production and
2,571 plots from 185 villages in 63 townships
of 23 counties in five provinces. Because
farmers in our samples also planted double-
season rice (early and late-season rice), we
analyzed data by type of rice: early-season
rice, middle-season rice (single-season rice),
and late-season rice. We thus arrive at the
final number of 3,754 observations.4 For each
observation in each plot, we collected data
for two time periods during the years 2010–
2012, that is, a severe disaster year and a
normal year; the time (or year) varies across
counties.

While the survey covers a wide range of
information, given the research objectives of
the article, our analysis uses only the follow-
ing data: 1) characteristics of households and
farms; 2) detailed plot-level rice production
data, especially production inputs (e.g., land,
labor, fertilizer, machinery, crop varieties, and
pesticide), outputs in both the severe disaster
year and normal year, and soil quality; 3)

4 The number of observations is 1,349 for early rice, 950 for
middle rice, and 1,455 for late rice.

farm management measures that may relate
to adaptations to extreme weather events
(e.g., drought or flood events) at the plot
level; and 4) availability of government ser-
vices at villages for fighting extreme weather
events, which was collected in the village
level survey.

Extreme Weather Events and Rice Farmers’
Responses

Overall, the frequency of extreme weather
events in the studied provinces exhibited a
rising trend. Drought in Henan and Yunnan
has become more severe, especially in Yun-
nan, which has witnessed several extreme
drought shocks in recent years. The average
annual crop area suffering from drought in
Yunnan increased from 0.47 million hectares
in the 1980s to 0.95 million hectares in
the 2000s, with an average growth rate of
3.2% (NBSC 2012). On the other hand, the
other three provinces, Jiangxi, Guangdong,
and Jiangsu suffered flood more often, but
drought has also been frequent (NBSC 2012).

The household surveys also demonstrate
the severity of drought and flood reported
by farmers in the study areas. For exam-
ple, as shown in table 1, the percentage of
samples that suffered from drought reached
41% in the severe disaster year (column 1).
As expected, drought occurred much less
frequently (16%) in the normal year (col-
umn 2). Likewise, the percentage of samples
affected by flood increased from 16% in the
normal year to 34% in the severe disaster
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year (row 5). For both drought and flood, the
highest frequency of disaster occurred for
middle rice (60% drought and 54% flood)
in the severe disaster year (column 1). Inter-
estingly, yield losses were similar when rice
production faced drought (23–24%) or flood
(25–24%) in either the severe disaster or nor-
mal year (columns 3 and 4). Because these
results were reported by farmers, the figures
in table 1 account for farmers’ responses to
drought and flood.

In response to the rising trend of extreme
weather events, farmers may take various
physical and non-physical measures. Phys-
ical measures include investments in and
maintenance of irrigation facilities such as
canals, tube wells, cisterns, ponds, and pump
equipment; non-physical measures include
farm management, crop insurance, and other
measures that do not require large invest-
ments (Wang, Huang, and Wang 2014). This
study specifically focuses on non-physical
measures such as farm management, which
are usually the most convenient type that
farmers can implement during crop grow-
ing season. Based on field surveys, the most
common farm management measures used
by farmers related to drought and flood are
reseeding, fixing, and cleaning seedlings. On
average, 30% of our samples used these mea-
sures (table 2), which are crucial at the early
stage of rice production when facing drought
or flood. Importantly, the field surveys also
revealed that the application rate of farm
management measures was generally higher
in the severe disaster year (33%) than in the
normal year (26%). While we are unsure how
extensively farm management measures were
applied in response to drought and flood,
we argue that the differences in applying
measures between the severe disaster year
and the normal year must largely result from

Table 2. Percentage of Plots with Major
Farm Management Measures Applied by
Rice Farmers, 2010–2012

Reseeding, Changing varieties
fixing in the next season

or cleaning or adjusting
seedlings fertilize use

Severe disaster
year

33 5

Normal year 26 4
Average 30 4.5

Note: Sample includes 3,754 observations.

farmers’ adaptation to more severe drought
and flood. For example, the 7% increment
(33–26) in the application of reseeding, fixing,
and cleaning seedlings represents an adapta-
tion to extreme weather events. Meanwhile,
farmers also applied other farm management
measures such as changing rice varieties the
following season and adjusting fertilizer use
(table 2). However, the difference between
the severe disaster year and the normal year
was not large.

Modeling and Estimation Procedure

We evaluate the impacts of farmers’ adapta-
tion to extreme weather events by adjusting
farm management practices on the mean
yield, risk, and downside risk of rice yield.
To do this, we start with a moment-based
approach (Antle 1983). The first moment
is the mean yield. The second moment
represents the variance of yield, measured
by the square term of the error term esti-
mated in the mean yield regression. The third
moment represents the downside risk (skew-
ness) of yield, measured by the third power
of the error term estimated in the mean
yield regression. We then incorporate the
estimated three moments in an econometric
model as independent variables and analyze
how farmers’ adaptation decisions affect the
above three outcomes.

Econometric Model of Mean Yield, Risk, and
Downside Risk

Following Antle (1983) and Antle and
Goodger (1984), we adopt a moment-based
approach that allows a flexible representation
of the production risk. This approach has
been widely used in agricultural economics
to model the implications of weather risk and
risk management (Di Falco and Chavas 2009;
Kim and Chavas 2003; Koundouri, Nauges,
and Tzouvelekas 2006). In our study, the rice
yield function in log(y) under production
uncertainty can be defined as:

(1) y = f1(A, X , θ1) + u,

where A refers to adaptation, which takes
a value of 1 if a farmer applies the farm
management measures, and 0 otherwise.
Further, X is a set of explanatory variables
that includes the following: a) production
inputs (labor, fertilizer, machinery, irrigation,
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pesticides, etc.) specified in log and a flood-
tolerant rice variety (1 for the flood-tolerant
variety, 0 otherwise); b) farm characteris-
tics including characteristics of household
head (gender, age, and education), household
assets (land and durable consumption assets
per capita), soil quality by category (low,
moderate, and high), and rice by type planted
(early, middle, and late); c) year dummies for
2011 and 2012 to control for the effects of
other variables related to each of the three
years (2010, 2011, and 2012); and d) province
dummies (fixed effects at the provincial
level) to control for the effects of province-
specific factors that do not change over time.
Moreover, θ1 is a vector of parameters to
be estimated and u is the error term that
captures the uncertainty, including weather,
faced by farmers, and satisfies E(u) = 0.

After estimating equation (1), we calculate
the error term u = y − f1(A, X , θ1). The cen-
tral moments of the yield can be defined as
E(y) = f1(A, X , θ1) for the expected value of
yield, E[(u)2] = f2(A, X , θ2) for the variance
of yield, and E[(u)3] = f3(A, X , θ3) for the
skewness of yield (Di Falco and Chavas 2009;
Kim and Chavas 2003).

Modeling Adaptation to Extreme Weather
Events

Two econometric challenges arise when esti-
mating the impact of farmers’ adaptation
decisions on the three outcome variables:
endogeneity of the application of farm
management practice (A), and the sample
selection bias due to unobserved hetero-
geneity. To deal with the sample selection
bias problem, we employ an endogenous
switching regression model to identify the
impacts of adjusting farm management prac-
tices on the mean, variance, and skewness
of rice yield. In the switching regression
approach, farmers are partitioned into two
regimes according to the application decision
(e.g., adapters and non-adapters). Farm-
ers typically choose to adapt when there is
a net benefit from doing so (Abdulai and
Huffman 2014). We can therefore represent
farmer i’s adaption decision (whether to take
adaptation measures) by a latent variable
A∗

i as

(2) A∗
i = g(X , Z, D, γ) + ηi, Ai = 1[A∗

i > 0],
where the variable Z is an instrument
variable (IV) for A that is going to be an

explanatory variable in the outcome equa-
tions (mean, variance, and skewness of rice
yield) discussed below. Access to the govern-
ment’s technical services against drought or
flood is an instrument variable used in the
selection function (2).5 This value is mea-
sured by determining whether a farmer can
access the government’s technical services
against drought or flood at the village level,
as well as using a dummy variable (1 = yes, 0
otherwise). The implication of X is similar to
that in equation (1). Furthermore, D includes
two dummy variables: the severe drought
year (1 = yes, 0 otherwise), and the severe
flood year (1 = yes, 0 otherwise) measured
at the county level. Additionally, γ denotes
a vector of parameters to be estimated. The
error term η with mean zero and variance σ2

η

captures measurement errors and unobserved
factors.

Given that the choice to apply farm man-
agement measures lies with the farmers, a
separate outcome function is specified for
adapters and non-adapters:

Regime 1 (Adapters) :(3a)

Q1i = f (A, X , D, β1) + ε1i if Ai = 1,

Regime 2 (Non-adapters) :(3b)

Q2i = f (A, X , D, β2) + ε2i if Ai = 0,

where Q1i and Q2i are the outcome variables
(mean of rice yield in log, variance of rice in
log, and skewness of rice yield) for adapters
and non-adapters, respectively.6 The vectors
β1 and β2 are parameters to be estimated.

The three error terms η, ε1, and ε2 in equa-
tions (2), (3a), and (3b) are assumed to have
a trivariate normal distribution, with zero

5 There are two types of such services. The first is to provide
early warning information on drought and flood through vari-
ous dissemination methods such as television, village broadcast,
text message, and meetings to urge farmers to pay attention
to the upcoming or on-going drought or flood. The second
is to send technicians from county or township extension sta-
tions to their villages to help farmers handle extreme weather
events (drought and flood). Whether technical services are
provided to a village is decided by governments (e.g., town-
ship, county, prefectural, or provincial governments) and these
services are provided exclusively for extreme weather events
(drought and flood); therefore, it is expected that the vari-
able of “access to the government’s technical services against
drought or flood at village” influences rice yields only through its
effects on farmers’ adaptation decisions related to drought and
flood.

6 We explored different functional forms such as the linear and
quadratic forms for the mean, variance, and skewness functions.
Finally, we presented the most robust results based on a linear-log
specification.
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mean and the following covariance matrix:

� =
⎡
⎢⎣

σ2
η ση1 ση2

σ1η σ2
1 σ12

σ2η σ21 σ2
2

⎤
⎥⎦ ,

where Var(ε1) = σ2
1, Var(ε2) = σ2

2, Var(η) = σ2
η,

Cov(ε1, ε2) = σ12, Cov(ε1, η) = σ1η, and Cov
(ε2, η) = σ2η. Note that since Q1i and Q2i are
not observed simultaneously, the covariance
between ε1 and ε2 is not defined. The sample
selection bias may lead to nonzero covari-
ance between the error term of the selection
equation (2) and the outcome equation (3)
(Maddala 1983). According to Lee and Trost
(1978), the expected values of the error terms
ε1 and ε2, conditional on the sample selection
are given as:

E[ε1i | Ai = 1](4)

= E(ε1i | η > −g(X , Z, D, γ))

= σ1η

ϕ[g(X , Z, D, γ)/σ)]
�[g(X , Z, D, γ)/σ] ≡ σ1ηλ1i,

and

E[ε2i | Ai = 0](5)

= E(ε2i | η ≤ −g(X , Z, D, γ))

= −σ2η

ϕ[g(X , Z, D, γ)/σ)]
1 − �[g(X , Z, D, γ)/σ]

≡ σ2ηλ2i,

where ϕ(·) is the standard normal probability
density function, and �(·) is the standard
cumulative distribution function. The terms
λ1 and λ2 refer to the inverse Mills ratio
evaluated at g(X , Z, D, γ), and are incorpo-
rated into equations (3a) and (3b) to account
for sample selection bias. In this study, the
endogenous switching model with the probit
model used in the first stage is estimated by
the full information maximum likelihood
(FIML) method (Lokshin and Sajaia 2004).
To account for the possible heterogeneity in
farmers’ decisions on whether to adapt or
not under the standard endogenous switch-
ing regression framework, we first included
two dummy variables (middle rice and late
rice) to capture the specificity of the different
crops. Second, we used the Huber/White
sandwich estimator for the robust het-
eroskedasticity variance estimation (Shen
and Hartarska 2013). This approach yields

consistent estimates of the covariance matrix
without making distributional assumptions
(Freedman 2006).

Of significant interest in this research is
how farmers’ adaptation of farm manage-
ment measures affects rice yield and risks.
This impact can be examined by first spec-
ifying the expected values of the outcome.
For an adapter and a non-adapter of the farm
management measures, the expected value of
the outcome is calculated, respectively, as

(6) E[y1i | Ai = 1] = f (A, X , D, β1) + σ1ηλ1i

and

(7) E[y2i | Ai = 0] = f (A, X , D, β2) + σ2ηλ2i.

Accordingly, the expected value of the same
adapter, had he chosen not to apply the farm
management measures, and of the same non-
adapter had he chosen to apply the measures
is given, respectively, as

(8) E[y2i | Ai = 1] = f (A, X , D, β2) + σ2ηλ1i

and

(9) E[y1i | Ai = 0] = f (A, X , D, β1) + σ1ηλ2i.

The change in outcome due to the appli-
cation of farm management measures can
then be specified as the difference between
application and non-application (Di Falco,
Veronesi, and Yesuf 2011). These changes are
termed the average treatment effect on the
treated (ATT) as the difference between (6)
and (8):

ATT = E[y1i | Ai = 1] − E[y2i | Ai = 1](10)

= f (A, X , D, β1) − f (A, X , D, β2)

+ (σ1η − σ2η)λ1i.

Similarly, we can also calculate the aver-
age effect of the treatment on the untreated
(ATU) for farmers that did not adapt as the
difference between (9) and (7):

ATU = E[y1i | Ai = 0] − E[y2i | Ai = 0](11)

= f (A, X , D, β1) − f (A, X , D, β2)

+ (σ1η − σ2η)λ2i.

Since sample selection is taken into account
through the terms (λ1, λ2) of equations (10)
and (11), ATT and ATU generate unbiased
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estimates of the effects of adjusting farm
management practices.

Econometric Estimation

Here we present the estimation results of
equations (2), (3a), and (3b). The basic des-
criptive statistics are presented in table A.1 of
the appendix.

Estimation of Mean Rice Yield Function

We begin by estimating the determinants
for the application of farm management
measures and their impact on the mean rice
yield. The results for the selection and mean
yield equations that are jointly estimated by
the FIML approach are reported in table 3.
The first column reports the estimates of the
selection function (1), which helps explain
why some farmers apply farm management
measures and others do not. The second
and third columns present, respectively, the
estimated coefficients of mean rice yield
functions (3a) and (3b) for farmers that did
and did not apply farm management mea-
sures. In the results of the selection function,
we are interested in the effects of severe
flood and drought on the application deci-
sion. Previous studies found there is not a
strong relationship between climate change
variables and farmers’ adaptation decisions
(Di Falco, Veronesi, and Yesuf 2011). Our
results show that compared to normal years,
more farmers adjust their farm management
practices when facing severe drought or flood
(rows 1 and 2, table 3). This result empiri-
cally confirms that the application of farm
management measures identified in this study
is a type of adaptation to extreme weather
events.

We also determine that the impacts of
various inputs and farm characteristics on
farmers’ adaptation decisions are statisti-
cally significant (column 1, table 3). Labor,
fertilizer, and other inputs, as well as using
a flood-tolerant seed variety have signifi-
cant positive effects on the probability of
adapting the farm management measures.
The estimated coefficient for male head of
households is negative and statistically signifi-
cant, suggesting that women tend to be more
motivated to adjust farm management prac-
tices related to extreme events. Both land per
capita and durable consumption assets per
capita have significant and positive effects on

adaptation. This result confirms that the poor
may be more vulnerable in the face of cli-
matic shocks (Wang, Huang, and Wang 2014).
We also find that the estimated parameters
for the 2011 and 2012 year dummy variables
are positive and significant. However, direct
interpretation of these parameters is not easy
because the differences could be due to many
systematical variations among different years.

The instrument variable (IV) has a sig-
nificant and positive effect on adaptation.
This suggests that farmers in villages with
access to the government’s technical ser-
vices against drought or flood were more
likely to practice adaptation against these
extreme weather events. The result implies
that having access to government technical
services against drought or flood can reduce
farmers’ constraints on applying adaptation
measures, and can thereby increase the pos-
sibility of adaptation. We also checked the
validity of the IV by conducting the following
three tests. First, we made a balance test on
pre-treatment characteristics of farmers who
do and do not have access to the technical
services against drought or flood. Results
indicate that the sample is not imbalanced
on observables. Second, the results of an
F-statistics test shows that despite statisti-
cal significance at the 1% level of the IV in
the first-stage selection model, we cannot
reject the presence of a weak instrument
(F-stat. = 8.1, which is less than the threshold
of 10). However, because the IV here is only
related to the government’s technical services
against drought or flood, and the selection
variable is farmers’ adaptation measures
in response to extreme drought and flood
events, intuitively the impact of this IV on
rice yield should be only (or largely) through
its impact on farmers’ adaptation measures.
To show there is no direct impact of the IV
on rice yield, we conducted the third test to
determine whether this IV does not directly
affect rice yield, but has an indirect effect on
rice yield through its effect on adaptation. To
do this, the rice yield among farmers that did
not adapt is regressed on the IV along with
all other variables. The t test statistic is 1.13,
suggesting evidence of no direct impact of
the IV on rice yield.

In yield equations, most estimated coef-
ficients are statistically significant with the
expected signs. For example, rice yield is
lower for both adapters and non-adapters
when extreme weather events are presented
(rows 1 and 2, table 3). In particular, the
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Table 3. Estimations of Farmer’s Adaptation and Its Impact on Mean Rice Yield

Rice yield (log)

Selection Adapters Non-adapters

Severe disaster years
Drought 0.117∗∗ 0.009 −0.124∗∗∗

(0.053) (0.027) (0.023)
Flood 0.277∗∗∗ −0.095∗∗∗ −0.273∗∗∗

(0.044) (0.021) (0.023)

Inputs
Labor (log) 0.100∗∗∗ −0.000 0.016

(0.019) (0.000) (0.010)
Fertilizer (log) 0.087∗∗∗ 0.079∗∗∗ 0.021

(0.027) (0.019) (0.016)
Machinery (log) 0.001 0.000 0.014∗∗∗

(0.006) (0.000) (0.004)
Other inputs (log) 0.031∗∗∗ 0.010 0.015∗∗

(0.012) (0.007) (0.006)
Flood-tolerant variety 0.122∗∗∗ 0.049∗∗ 0.015

(0.035) (0.020) (0.016)

Farm characteristics
Male of household head −0.245∗∗ 0.147∗ 0.128∗

(0.119) (0.089) (0.076)
Age of household head −0.003 −0.003∗∗∗ −0.003∗∗∗

(0.002) (0.001) (0.001)
Education of household 0.007 0.001 0.008∗∗∗

(0.005) (0.003) (0.003)
Land per capita 0.138∗∗∗ −0.002 −0.028∗∗

(0.024) (0.015) (0.013)
Durable consumption assets
per capita

0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000)
Moderate soil quality 0.010 0.033 0.098∗∗∗

(0.049) (0.021) (0.025)
High soil quality −0.034 0.086∗∗∗ 0.146∗∗∗

(0.056) (0.027) (0.028)
Middle rice −0.046 0.218∗∗∗ 0.257∗∗∗

(0.046) (0.026) (0.024)
Late rice −0.050 0.079∗∗∗ 0.144∗∗∗

(0.036) (0.022) (0.019)
D2011 0.174∗∗∗ 0.220∗∗∗ 0.131∗∗∗

(0.052) (0.041) (0.028)
D2012 0.112∗∗ 0.143∗∗∗ 0.113∗∗∗

(0.049) (0.032) (0.022)

Instrument variable
Access to the government’s

technical services against
drought or flood

0.108∗∗∗
(0.039)

Constant −0.479 8.055∗∗∗ 8.243∗∗∗
(0.323) (0.223) (0.166)

Province dummies Yes Yes Yes
σi 0.382∗∗∗ 0.542∗∗∗

(0.047) (0.023)
ρj 0.085 −0.045

(0.225) (0.040)

Note: Robust standard errors appear in parentheses. Asterisks ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
The sample consists of 7,508 observations (3,754 × 2 years).
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impact of flood on the rice yield of non-
adapters is larger than that of the adapters.
These results suggest that flood events are
more severe than drought for rice produc-
tion. Adapters suffer less yield loss than
non-adapters, indicating the effective impact
of adaptation. An exception is found for
adapters in the severe drought year: the
estimated coefficient is not statistically signif-
icant. This may be because rice is generally
planted in areas where the availability of
irrigation water is more ensured. Having less
significant coefficients for input variables
(rows 3–7, table 3) is consistent with previ-
ous findings on intensive or excessive use of
production inputs in China (e.g., Huang et al.
2008; Holst, Yu, and Grun 2013).

Regarding farm characteristics, most esti-
mated coefficients are statistically significant.
Households headed by men, youths, and
highly educated people tend to improve rice
yield for both adapters and non-adapters
(middle section, table 3). The negative impact
of land per capita suggests the average yield
is negatively correlated with farm size, a find-
ing similar to that of many existing studies
(e.g., Abdulai and Huffman 2014). Other
variables such as wealth (durable consump-
tion assets per capita) and better soil quality
also positively impact rice yield. The order of
yield from early rice to middle rice and then
to late rice is also expected.

Estimation of Risk Functions

The estimation of farmers’ adaptation deci-
sions and their impacts on the variance and
skewness of rice yield are shown in table A.2
(appendix) and table 4. Because the results
on the selection (or adaptation) equation
(column 1, tables A.2 and 4) are similar to
those presented in table 3, here we focus on
the estimates of the variance and skewness
functions.

Most of the estimated coefficients in the
variance function are statistically significant
(table A.2). The signs of many of the coeffi-
cients reveal some interesting findings. For
example, severe flooding is found to have a
statistically positive impact on the variance
of rice yield for non-adapters, but no signif-
icant impact for adapters (row 2, table A.2).
This suggests that the adaptation does miti-
gate rice yield risk or variance when severe
flooding occurs. The impact of severe drought
on the variance is positive but not statisti-
cally significant. This may be because rice

is produced in regions with good irrigation
infrastructure. The impacts of several inputs
and farm characteristics on the variance of
yield also differ (middle section, table A.2).

Regarding the skewness of rice yield, we
first test normality of the error term u with a
null hypothesis that the yield distribution is
symmetric using a Wald statistic. The mean
skewness of u is −0.35 and the Wald statis-
tic is statistically different from zero with a
p-value of 0.000. This implies that the dis-
tribution yield is skewed to the left, which
corresponds to a significant exposure to
downside risk. In this case, if negative skew-
ness increases, the probability of crop failure
would increase (Torriani et al. 2007).

The results of the estimated skewness
function suggest that both severe flood-
ing and drought have significantly negative
effects on the skewness of rice yield, and thus
increase the exposure to downside risk for
both adapters and non-adapters (rows 1 and
2, table 4). We also find that inputs such as
labor, machinery, and better soil quality have
different effects on the skewness of yield for
adapters and non-adapters (middle section,
table 4). The differences in the coefficients of
the variance and skewness functions between
adapters and non-adapters illustrate the
presence of heterogeneity in the sample.

The estimated results show that the covari-
ance term ρj in the skewness function for
both adapters and non-adapters is not statis-
tically different from zero (table 4), while ρj
in the variance function has a positive sign
and is statistically significant in the equation
for non-adapters (table A.2).7 This infor-
mation suggests that non-adapters have
significantly higher variance of rice yield than
a random household in the sample. On the
other hand, ρj has a negative sign and is sta-
tistically significant in the adapters’ equation,
indicating that adapters have lower variance
of rice yield than a random household in the
sample (Akpalu and Normanyo 2014).

7 The estimates presented in the last two rows of tables 3, 4, and
A.2 account for the endogenous switching in the mean, variance,
and skewness of rice yield functions, respectively. Although the
estimated coefficients of the correlation term ρj are not statistically
significant in the mean and skewness of rice yield functions
(tables 3 and 4), it is statistically significant in the variance
of rice yield function (table A.2). In addition, the estimated
coefficients of many variables in the mean, variance, and skewness
of yield functions between adapters and non-adapters differ. The
above results suggest that we would have encountered estimation
problems if we had not used the endogenous switching regression
model.
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Table 4. Estimations of Farmer’s Adaptation and Its Impact on Skewness of Rice Yield

Skewness of rice yield

Selection Adapters Non-adapters

Severe disaster years
Drought 0.115∗∗ −0.130∗∗∗ −0.201∗∗

(0.053) (0.048) (0.088)
Flood 0.278∗∗∗ −0.347∗∗∗ −0.781∗∗∗

(0.044) (0.078) (0.092)

Inputs
Labor (log) 0.101∗∗∗ −0.059∗ 0.089∗∗

(0.019) (0.032) (0.041)
Fertilizer (log) 0.085∗∗∗ 0.079∗ −0.012

(0.027) (0.041) (0.058)
Machinery (log) 0.001 −0.017∗∗∗ 0.045∗∗∗

(0.005) (0.006) (0.014)
Other inputs (log) 0.033∗∗∗ −0.015 0.028

(0.012) (0.014) (0.026)
Flood-tolerant variety 0.124∗∗∗ 0.066 0.043

(0.035) (0.057) (0.067)

Farm characteristics
Male of household head −0.245∗∗ 0.326 0.044

(0.119) (0.380) (0.260)
Age of household head −0.003∗ −0.003 −0.008∗∗∗

(0.002) (0.004) (0.003)
Education of household 0.007 0.000 0.006

(0.005) (0.000) (0.012)
Land per capita 0.138∗∗∗ −0.056 −0.076

(0.024) (0.051) (0.056)
Durable consumption assets
per capita

0.001∗∗∗ 0.001∗ 0.002∗∗∗

(0.000) (0.001) (0.001)
Moderate soil quality 0.010 −0.087∗∗ 0.150

(0.050) (0.035) (0.103)
High soil quality −0.034 −0.120∗ 0.070

(0.056) (0.067) (0.121)
Middle rice −0.042 0.408∗∗∗ 0.589∗∗∗

(0.047) (0.108) (0.113)
Late rice −0.070∗ 0.262∗∗∗ 0.466∗∗∗

(0.036) (0.080) (0.077)
D2011 0.175∗∗∗ 0.482∗∗∗ 0.505∗∗∗

(0.052) (0.108) (0.124)
D2012 0.112∗∗ 0.324∗∗∗ 0.422∗∗∗

(0.049) (0.086) (0.092)

Instrument variable
Access to the government’s
technical services against
drought or flood

0.105∗∗∗
(0.037)

Constant −0.421 −0.781 −1.457∗∗
(0.325) (0.689) (0.597)

Province dummies Yes Yes Yes
σi 1.226∗∗∗ 2.299∗∗∗

(0.099) (0.040)
ρj 0.024 −0.013

(0.027) (0.033)

Note: Robust standard errors appear in parentheses. Asterisks ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
The sample consists of 7,508 observations.
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Table 5. Impacts of Farm Management Measures on Mean, Risk, and Downside Risk
Exposure of Rice Yield

Decision stage

Sub-samples To adapt Not to adapt Treatment effects

Average expected rice yield (kg/ha)
Rice plots that adapted 5,571 4,908 ATT = 663∗∗∗
Rice plots that did not adapt 5,161 5,086 ATU = 74∗∗∗

Average expected variance (risk)
Rice plots that adapted 0.028 0.049 ATT = −0.021∗∗∗
Rice plots that did not adapt 0.016 0.035 ATU = −0.019∗∗∗

Average expected skewness (downside risk exposure)
Rice plots that adapted −0.136 −0.438 ATT = 0.302∗∗∗
Rice plots that did not adapt −0.173 −0.487 ATU = 0.314∗∗∗

Note: ATT represents the effect of the treatment (i.e., adaptation) on the treated (i.e., farmers that adapted), while ATU represents the effect of the
treatment (i.e., adaptation) on the untreated (i.e., farmers that did not adapt). Asterisks ∗∗∗ denote significance at the 1% level.

Effects of Adaptation on Mean, Variance, and
Skewness of Rice Yield

The estimates for the average treatments
effects (ATT and ATU) on the mean, vari-
ance, and skewness of rice yield are presented
in table 5. The results reveal that the adap-
tation significantly increases rice yield (rows
1 and 2). Unlike the mean differences pre-
sented in table A.1, which may confound the
impact of farmers’ adaptation decisions on
yield through the influence of other char-
acteristics, these average treatment effect
estimates account for selection bias arising
from the fact that adapters and non-adapters
may be systematically different. Specifically,
in the counterfactual case represented by
equation (8), farmers who adapted would
reduce rice production by 663 kg/ha (about
14%) if they had not adapted (row 1). If we
extrapolate such loss to the national level,
it implies that China would reduce rice pro-
duction by 9%, equivalent to $8.4 billion
USD. In the counterfactual case, equation
(9), for farmers who did not adapt, they
would increase rice production by 74 kg/ha
(about 2%) if they did adapt (row 2). This
implies that China would increase crop rev-
enue by $0.99 billion USD due to adaptation
measures taken by rice farmers. These find-
ings suggest adapting to extreme weather
events through farm management measures
does benefit China through increased rice
production.

Table 5 also presents the average treat-
ment effects of adaptation on the variance
and skewness of rice yield. We find that
farm management measures taken by farm-
ers in response to extreme weather events

significantly decreased both variance (rows
3–4) and downside risk of rice yield (rows 5–
6). For example, the risk (variance measure)
faced by farmers who adapted would have
had an increase of 0.021 units (about 43%) if
they had not adapted (row 3). The impact of
taking adaptation measures on the downside
risk of rice yield is similar to its impact on
the variance case. The downside risk faced
by farmers who adapted would have had an
increase of 0.302 units (about 69%) if they
had not adapted (row 5). These estimates
show that farmers’ adaptation to extreme
weather events hedges against the risk of
crop failure.

Conclusions

Using data from a survey conducted in five
provinces in China, this article investigates
the contribution of applying farm man-
agement measures in response to extreme
weather events on the mean, variance, and
downside risk of rice yield. The survey results
show that more farmers adjust their farm
management practices (e.g., reseeding, fixing,
and cleaning seedlings) in severe drought and
flood years than in normal years. The econo-
metric analysis confirms that the applied farm
management measures respond to severe
drought and flood and can be considered
an adaptation to climate change, an issue
often ignored in previous studies. The extent
of applying farm management measures is
closely correlated with crop input levels and
varies across households with differences in
the characteristics of both farmers and their
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farms. Moreover, improving farmers’ access
to governmental services for drought and
flood facilitates farmers to adapt by adjusting
their farm management practices. Existing
farm management measures can help farmers
adapt to extreme weather events, and adjust-
ing farm management helps increase the
mean rice yield and reduces risks, including
the variance and downside risk of rice yield.

The findings from this study have several
policy implications. First, the farm manage-
ment measures can be used for adaptive risk
management in rice production. Currently,
plans for enhancing national adaptation
strategies have mainly focused on new invest-
ment and new technology (IPCC 2014).
While these are important, national adap-
tation plans should also focus on existing
farm practices, such as the farm management
measures discussed in this study, which can
reduce climate risks and can be easily applied
by farmers. However, our survey shows that
even during severe drought and flood years,
only one-third of farmers are able to use farm
management measures to cope with extreme
weather events. Since the cost of this kind of
adaptation is low, the potential to scale it up
to more farmers is high.

Second, public services can play an impor-
tant role in helping farmers adapt to extreme
events, thereby increasing their adaptive
capacity. Our results suggest that the govern-
ment’s services for drought and flood (e.g.,
the dissemination of warning information
during/after disasters and providing tech-
nical guidance by sending technical experts
to the fields) is of paramount importance in
determining the implementation of farmers’
adaptation measures. Further, the availability
of disaster warning information may increase
farmers’ awareness of threats posed by
extreme weather events. Providing technical
guidance can reduce farmers’ constraints on
applying adaptation measures and increase
the possibility of adaptation. However, only
one-fourth of rice farmers in our study areas
can access these services. Clearly, there is
room to incorporate climate change adap-
tation services into China’s public extension
system.

Third, another crucial area where farmers’
adaptive capacity can be improved is the
development of large family farms in China.
The results show that land per household is
a significant driver of the decision to adapt.
For those farmers who have adapted, this
seems to indicate that the scale management

of agriculture helps to decrease rice produc-
tion risks posed by extreme events. Policy
makers should therefore mainstream climate
change adaptation into the modernization of
agriculture symbolized by scale management.
Accordingly, policy makers may also need
to intervene to encourage land transfer to
promote the emerging rental market in rural
areas of China.

Fourth, enhancing the adaptive capabilities
of the poor in response to extreme events
should be another prioritized area for pol-
icy interventions. The positive influence of
household assets on adaptation decisions
suggests that the poor, who generally lack
sufficient capital or labor, may be more vul-
nerable in the face of extreme events. Hence,
governmental support such as technical ser-
vices for droughts or flooding should partic-
ularly be given to the poor to enhance their
adaptation of farm management measures.

Finally, as farmers have been suffering
increasingly frequent and severe extreme
weather events in many developing countries,
we believe the findings of this study also have
implications for other countries in terms of
their national adaptation plans and farmers’
crop risk management.
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Appendix

Table A.1. Descriptive Statistics of Variables by Adapters and Non-adapters of Farm
Management Measures

Variables Total Adapters Non-adapters Diff.

Rice yield (kg/ha) 5,631.13 5,854.71 5,537.50 317.21∗∗∗
Variance of rice yield 0.25 0.15 0.30 −0.15∗∗∗
Skewness of rice yield −0.35 −0.14 −0.44 0.30∗∗∗
Severe flood year (1 = yes; 0 = no) 0.31 0.36 0.29 0.07∗∗∗
Severe drought year (1 = yes; 0 = no) 0.19 0.21 0.19 0.02∗∗
Labor (days/ha) 125.41 138.72 119.83 18.89∗∗∗
Fertilizer (kg/ha) 405.56 413.97 402.03 11.94∗∗∗
Machinery (yuan/ha) 1,807.27 1,778.93 1,819.14 −40.21∗
Other inputs (yuan/ha) 1,173.78 1,235.09 1,148.11 86.98∗∗∗
Flood-tolerant variety (1 = yes; 0 = no) 0.28 0.32 0.26 0.06∗∗∗
Male of household head (1 = male; 0 =

female)
0.98 0.98 0.98 0.00

Age of household head (years) 54.13 53.88 54.23 −0.35
Education of household head (years) 6.63 6.78 6.57 0.21∗∗∗
Land per capita (ha) 0.34 0.40 0.32 0.08∗∗∗
Durable consumption assets per capita

(1,000 yuan)
23.98 26.94 22.73 4.21∗∗∗

High soil quality (1 = yes; 0 = no) 0.22 0.21 0.23 −0.02
Moderate soil quality (1 = yes; 0 = no) 0.66 0.67 0.65 0.02
Middle rice (1 = yes; 0 = no) 0.25 0.26 0.25 0.01
Late rice (1 = yes; 0 = no) 0.39 0.38 0.39 −0.01
2012 (1 = yes; 0 = no) 0.47 0.44 0.49 −0.05∗∗∗
2011 (1 = yes; 0 = no) 0.30 0.35 0.28 0.07∗∗∗
Access to the government’s technical

services against drought or flood
(1 = yes; 0 = no)

0.24 0.26 0.23 0.03∗∗

Note: There are 7,508 total observations. Asterisks ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.
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Table A.2. Estimations of Farmer’s Adaptation and Its Impact on Variance of Rice Yield

Variance of rice yield (log)

Selection Adapters Non-adapters

Severe disaster years
Drought 0.065 0.254 0.167

(0.051) (0.211) (0.125)
Flood 0.214∗∗∗ −0.225 0.662∗∗∗

(0.041) (0.167) (0.104)

Inputs
Labor (log) 0.076∗∗∗ −0.236∗∗∗ 0.130∗∗∗

(0.017) (0.071) (0.043)
Fertilizer (log) 0.045∗ −0.000 −0.032

(0.025) (0.000) (0.058)
Machinery (log) −0.001 −0.021 −0.064∗∗∗

(0.005) (0.023) (0.014)
Other inputs (log) 0.030∗∗∗ −0.156∗∗∗ 0.025

(0.011) (0.048) (0.026)
Flood-tolerant variety 0.081∗∗ −0.282∗∗ 0.046

(0.032) (0.132) (0.083)

Farm characteristics
Male of household head −0.211∗ 0.537 −0.886∗∗∗

(0.108) (0.434) (0.284)
Age of household head −0.002 0.011∗ 0.001

(0.001) (0.006) (0.003)
Education of household 0.008 −0.045∗∗ −0.016

(0.005) (0.021) (0.013)
Land per capita 0.116∗∗∗ −0.346∗∗∗ 0.336∗∗∗

(0.022) (0.085) (0.058)
Durable consumption assets
per capita

0.001∗∗∗ −0.005∗∗∗ 0.002∗∗∗

(0.000) (0.001) (0.001)
Moderate soil quality 0.019 0.023 −0.281∗∗

(0.044) (0.180) (0.111)
High soil quality −0.055 0.399∗ −0.538∗∗∗

(0.051) (0.211) (0.127)
Middle rice −0.075∗ −0.208 −1.034∗∗∗

(0.043) (0.175) (0.107)
Late rice −0.054 −0.199 −0.556∗∗∗

(0.034) (0.138) (0.084)
D2011 0.089∗ −0.890∗∗∗ −0.946∗∗∗

(0.048) (0.200) (0.121)
D2012 0.068 −0.965∗∗∗ −1.129∗∗∗

(0.045) (0.183) (0.111)

Instrument variable
Access to the government’s
technical services against
drought or flood

0.085∗∗∗
(0.020)

Constant −0.317 −0.512 0.412
(0.290) (1.158) (0.834)

Province dummies Yes Yes Yes
σi 3.810∗∗∗ 2.855∗∗∗

(0.085) (0.035)
ρj −0.965∗∗∗ 0.908∗∗∗

(0.004) (0.006)

Note: Robust standard errors appear in parentheses. Asterisks ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. The
sample consists of 7,508 observations.
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