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a b s t r a c t

The effect of roads on forests is ambiguous. Many studies conclude that building and

upgrading roads increases pressure on forests but some find that new and better roads

may reduce the rate of deforestation. In this paper we use satellite remote sensing

images of forest cover in Jiangxi Province, China, to test whether the existence and the

size of roads (ranging from expressways to tertiary roads) in 1995 affected the level of

forest cover in 2000 or the rate of change between 1995 and 2000. To account for road

access for each of our 1 km2 (‘‘pixel’’) units of forest cover we measure whether or not

and what type of roads penetrate the ‘‘watershed’’ in which the pixel lies. These

watersheds allow more plausible measures of accessibility than do traditional ‘‘crowfly’’

distance measures that ignore topography. To account for possible confounding we also

use 12 additional covariates: geographic and climatic variables (e.g., elevation, slope,

rainfall, temperature, soil properties); demographic and economic variables (e.g., local

population and GDP per square kilometer); and distance variables (e.g., distance to the

nearest provincial capital). Although simple univariate OLS regressions show that forest

levels are lower and deforestation rates higher either when there is a road, or when

there is a higher quality road, these results are not robust. Controlling for all of the

covariates and also using recently developed covariate matching techniques to estimate

treatment effects, we find that roads in China’s Jiangxi Province can most safely be

described as having no impact on the level of forests and no impact on the rate of

deforestation.

& 2010 Elsevier Inc. All rights reserved.
1. Introduction

The world lost 3% of its total forested area between 1990 and 2005 [1]. With rising concern over many environmental
issues related to deforestation, such as climate change and conservation of biological diversity, increasing efforts are being
made by economists, ecologists, geographers and other scientists to understand the causes of deforestation [2–6]. Seeking
to identify statistically the determinants of deforestation, the literature finds that various geophysical factors, such as slope
and elevation, demographic factors, economic variables and policies and other actions of governments (e.g., setting up of
park systems [2]) are all important correlates of forest cover and deforestation [7–9].
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Above all of these factors, however, probably the largest literature—and most rigorous set of empirical papers—has
focused on the relationship between roads and deforestation. In many instances roads are found to lead to deforestation
[7]. The logic is that when a road enters an area (or when it is widened or improved), pressure will rise on the forest
resources in the area and forest cover will fall. An important implication of what we characterize as this ‘‘pressure cooker’’
hypothesis is that ‘‘road networks [y] may significantly shape the spatial pattern of remaining forest’’ [7]. Hence, road
investments in forested areas of tropical developing countries are thought to lead to deforestation.

While evidence for this ‘‘pressure cooker’’ hypothesis comes especially from the Amazon [2,5], other studies from Belize
[8], the Philippines [10], Honduras [11], Cameroon [12] and Costa Rica [13] also find that roads are associated with
deforestation. Yet there are some notable contrary findings in the literature, including a high profile study on deforestation
and economic growth in the Brazilian Amazon [14]. These authors find that new roads reduce the rate of deforestation, at
least in counties with substantial prior clearing of forest. The suggested causal mechanism is that roads provide a focal
point for local development, drawing pressure away from the forested hinterland.

According to this ‘‘pressure valve’’ hypothesis, when new or better roads reach a region, access to transportation and
new and more convenient linkages to the outside world encourages growth, produces jobs and increases agricultural
productivity. If these dynamics are able to refocus the livelihood strategies of households that previously were encroaching
on forests into intensive (river-bottom; irrigated) agriculture and off-farm employment, including migration, the pressure
on the forest might be reduced. In addition to the Andersen et al. [14] study, other evidence in favor of the pressure valve
hypothesis comes from Deininger and Minten [15], who find that roads appear to diminish the negative impact of high
poverty levels on forests in Southern Mexico, and Qiao et al. [16], who find that forested area rose when village economies
in southern China became more integrated with markets. Clearly, at least in some areas and in some studies, there is
evidence that a positive ‘‘development effect’’ can lead to less pressure on forests.

In fact, there has been a fairly large literature that discusses the mechanism that may be underlying the pressure-valve
hypothesis. Such a phenomenon could arise in part as a result of increased opportunities to purchase inputs that increase
or maintain yields [17,18]. In contrast, Zwane [19] demonstrates that if the labor market is imperfect, the poverty–
deforestation hypothesis becomes ambiguous. In any case, to the extent that roads—through lower transportation
costs—increase agricultural productivity and deepen the labor market by creating new jobs, roads can refocus the
livelihood strategies of households that previously were encroaching on forests into intensive (river-bottom, irrigated)
agriculture and off-farm migration and therefore reduce pressure on the forest.

The ambiguities about the effect of roads on forests have led to refinements in the data and methods used in more
recent empirical studies. For example, Pfaff et al. [6] use a finer spatial scale to re-evaluate the findings of Andersen et al.
[14], when they move from using 250 counties to more than 6000 census tracts they find deforestation rises in tracts with
new roads and also elsewhere in the same county within 100 km. However, it is not clear how reasonable such ‘‘crowfly’’
distance measures are that ignore topography; two tracts in the same county could be separated by considerable physical
barriers like mountains. It is also not clear that traditional multiple regression methods of including control variables can
provide estimates of treatment effects that are robust to the endogenous placement of roads.

Since existing evidence on the effects of roads on forests is unclear, and has not always benefited from latest
refinements in data and methods; new evidence is required, which this paper reports. Specifically, we use satellite remote
sensing images of forest cover in Jiangxi Province, China, to test whether the existence of roads and the size of roads
(ranging from expressways to tertiary roads) in 1995 affected the level of forest cover in 2000 or the rate of change
between 1995 and 2000. To account for road access for each of our 1 km2 (‘‘pixel’’) units of forest cover we measure
whether or not and what type of roads penetrate the ‘‘watershed’’ in which the pixel lies. These watersheds allow more
plausible measures of accessibility than traditional ‘‘crowfly’’ distance measures, which ignore topography. To account for
confounding from the exclusion of other relevant variables and potentially biased estimates of treatment effects due to the
endogenous placement of roads, we also use covariate matching techniques, using 12 additional covariates. Our overall
goal is to discover if roads are acting more like pressure cookers—and are associated with lower levels of forests and
greater rates of deforestation in Jiangxi—or like pressure valves—and are associated with higher levels of forest and lesser
rates of deforestation.
2. Data, case study area and definitions

One of the strengths of our study is the quality of data that we use to estimate the quantity of forested area in a given
year and changes in forested area over time. For our purposes, we believe that variables based on satellite remote sensing
digital images are the most suitable measures that can be used for detecting and monitoring land use change (LUC) at
global and regional scales [3,20–24]. In China land use change—including changes in forested areas—has been tracked by
remote sensing data and results of the empirical exercises have been reported in the literature [25–27]. An appendix
available at JEEM’s online archive of supplementary material provides technical details on the remote sensing data and
other additional analyses. This archive can be accessed at /http://aere.org/journalsS.

The definition of forested area in our study is a comprehensive one that captures and includes a heterogeneous set
of different types of forests. In using the raw land use data, forested area can be sub-divided into four distinct classes:
(a) natural or planted forests with canopy cover greater than 30%; (b) land covered by trees less than 2 m high, with a

http://aere.org/journals
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canopy cover greater than 40%; (c) land covered by trees with a canopy cover between 10% and 30%; and (d) the rest of
forested area. In this paper, we use a single measure of forested area that includes all four types of forest (a+b+c+d),
a definition that should pick up most of the province’s area that is covered by trees.

Interpreting the results requires that the setting of the study is clear. Jiangxi Province is located in central, southeastern
China. Although completely land-locked and not a member of the group of China’s coastal provinces that are driving the
nation’s modernization, Jiangxi shares a border with the nation’s three fastest growing provinces—Zhejiang, Fujian and
Guangdong. The proximity of Jiangxi to China’s booming coastal provinces has given its rural population access to increasingly
lucrative off farm employment opportunities. Its location south of the Yangtze River means it has temperate weather, which
provides excellent conditions for forest growth [28]. Therefore, not surprisingly, Jiangxi is a highly forested province. Forests
are both economically and environmentally important; the province is part of a traditional timber-producing region that
formerly was one of the largest timber producing provinces in China. Jiangxi is also a densely populated province with a large
agricultural sector. Appendix B provides a more complete description of the province’s forests.

In such an environment one can see how the entry of roads in recent years could affect the forest—albeit, it is not
necessarily clear what the net direction is. With new roads, it would be possible for previously isolated villages to use the
new road network to begin to exploit the forest since markets for forest products were more readily available and
transportations costs had fallen. On the other hand, with new opportunities for working off the farm and becoming
engaged in intensive agricultural activities that do not require farmers to push their land into the mountains, it also is
possible to see how farmers might use the roads to turn their backs on the forest, leaving them alone while focusing on
non-forest activities. Likewise, tree planting sometimes may be labor-saving. With the opportunity cost of farmers rising
(due to new off farm employment opportunities), the roads that make leaving easier, could also make afforestation efforts
easier to organize and more incentive compatible with busy farmers.

According to our definition of the forest specified above, Jiangxi today is indeed a highly forested province. Although
China’s total forested area is reported by the State Forest Administration to be under 20%, our data suggest that Jiangxi’s
forest cover was 56.28% in 1995. By 2000, according to the data, forested area was 56.23%.1

Because our data are from two distinct sets of years, 1995 and 2000, they can be used to track the changes in the forest.
Using the data from both years, we can show that the forest cover in Jiangxi decreased only slightly, by 0.05% points,
between 1995 and 2000.2 Although decreasing in the aggregate by only a small margin, Fig. 1, which charts the differences

in the forest cover across time for each pixel in the data set, demonstrates two things. First, there is both deforestation and
afforestation occurring at the same time. Second, based on the data used in Fig. 1, it can be shown that, in fact, the forest in
Jiangxi is quite dynamic and changing over a large area. Specifically, the forest area was rising in more than 7.1% of the
pixels. In contrast, the forest area was falling in more than 47.1% of the pixels. This means that, although the total change in
forest area was low, the total share of the forest that was changing was high (54.2%=7.1%+47.1%). While such numbers
suggest that deforestation is occurring, it must be remembered that the nature of deforestation and afforestation
sometimes makes it difficult to interpret net changes in a ‘‘fair’’ way. Since the return of the forest often takes longer to
occur than the time it takes to cut down the forest, it is possible that what appears like deforestation today, could mean
that the forest area will rise in the future. One of the main questions of this paper is to understand if roads are encouraging
the observed deforestation, or if they are part of the set of forces that facilitates afforestation.

The basic data for our roads variable come from provincial, county and local maps which are from the CAS data center.
The maps are up to date through 1996. The information from the hard copies of the maps was digitized by a working group
based in the Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Science, in 1999 and
2000. Although it would be simple to calculate the straight-line (‘‘crowfly’’) distance from each pixel to the nearest
segment of digitized road, such an approach is likely to provide a misleading measure of road access. Almost two-thirds of
Jiangxi’s land area is classified as mountainous or hilly, so travel from many pixels to the nearest road involves going over
mountains, which may be impractical. In such an environment, a more realistic measure of accessibility requires
knowledge of the topography, and in particular, of watersheds. Our assumption is that travel within a watershed is likely to
be less impeded than travel between watersheds, so that if a road enters a watershed all pixels within that watershed are
likely to have feasible access to the road.3

A second issue also arises concerning what is the appropriate unit into which we should divide our data. Should we use
administrative boundaries, such as counties, or should we use natural boundaries, such as watersheds? It is plausible that the
timber harvesting decisions are influenced by forest planning (or some other cross watershed policy or economic force) at a
1 Forest inventory data released by China’s State Forest Administration showed that the forest cover rate in Jiangxi had reached 59.7% in 1999. While

higher than the rate estimated by the remote sensing data from 2000, the two can be mostly reconciled after accounting for the fact that this level

included all the forestry land with a forest canopy of 20% or greater; it also included four types of forested areas: timber forests, economic forests, bamboo

forests and scattered forests. Hence, the differences between the estimated rates of forested cover from census and remote sensing data mainly stem from

the differences in definitions and the methods by which forested area is classified.
2 Although the change in forest area in our paper is small, in fact, the rate is comparable to those of a few studies. Robalino et al. [9] used data from

Costa Rica, where forest area in the study area declined by 1% (down from 47% to 46%) between 1986 and 1997. Pfaff et al. [6] used data from the Amazon,

where 3.7% of forest area in 1976 was deforested by 1987. Mertens and Lambin [12] used data from Cameroon, where the forest cover declined by 7%

during 1973–1986.
3 As a robustness analysis, we also run the analyses by defining the road variable at the pixel level, i.e., whether or not a type(s) of road runs through

the pixel itself.



Fig. 1. Measurement the changes of forestry area of Jiangxi in each 1 km GRID pixel, measured in ha.
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larger scale than the pixel level. For example, county-level forest policies may affect micro-level harvesting decisions. Planning
of large roads also is likely to occur at a much larger scale than pixel. However, there are many other factors that suggest that
natural watershed boundaries are more appropriate than administrative boundaries. This is especially true considering that
the boundaries of watersheds reflect the inherent winding line of a watershed in which all the natural conditions of land use
and the human development activities share the same characteristics. Because of this, local governments almost always use
watersheds (instead of administrative boundaries) when they do environmental planning or development planning. Therefore,
it seems most natural to use the boundary of watersheds as the analytical units in this study.

As a result of these factors and considerations, to take the digitized road map of the province and turn it into a discrete,
pixel-specific measure of the largest road that penetrates any part of each watershed, we undertook a four step procedure.
The first step began with a detailed GIS map of Jiangxi Province. We used this map—and a watershed delineation function
included in ArcGIS—to divide the area of the province into distinct, non-overlapping watersheds. This process was
accomplished using information on elevation and the formation of the landscape. In our study (as in most GIS-based
watershed analyses) a watershed is defined as a set of spatially contiguous pixels, where if two drops of water were to fall
on any two arbitrary pixels and if the drops were allowed to flow out of the watershed, they would both leave the
watershed through the same point (or through the same outlet pixel).

Previous evidence suggests that the choice of spatial scale can affect results [6,29]. We therefore specified two different
ranges for the number of watersheds into which the software attempts to divide the province: 1000–1500 (a finer division
of watersheds) and 500–1000 (a coarser division of watersheds). After doing so, we created two maps in ArcGIS, which are
used in different sets of our estimates—the main one we use divides Jiangxi into 1474 watersheds (Fig. 2, panel a). In Fig. 2,
panel b, we include a map of Jiangxi that was divided into a lesser number of watersheds.4

In step two, the digitized road map and the digitized watershed map were merged.5 Representations of the watershed
maps overlaid with the road network are shown in Fig. 3, panels a and b. This merging then allowed each watershed to be
assigned to one of four categories, according to the size of the largest road that runs through the watershed.

The four types of roads are expressways (which are multilane, controlled access highways); province-level highways

(which are major roads that are typically not controlled access, but which are usually relatively well maintained since the
province’s highway bureau is charged with their maintenance); other roads (which are all major roads—county-level
roads—except expressways and province-level highways) and no road (or pixels with no major roads—or those with only
smaller, town- and village-level roads). After this step every watershed in the province is labeled with one (and only one)
of four names: expressway watershed; province-level highway watershed; other road watershed; or a no road watershed. If a
watershed has both an expressway and a province-level highway (and/or other road) inside its boundary, it is still, by
definition, an expressway watershed.
4 The findings of the paper are not affected by the aggregation level used to define watersheds. In fact, when we divided Jiangxi Province into 654

watersheds (Fig. 2, panel b) and reran all of the estimation exercises, the results of the study are not materially affected.
5 The maps were drawn so that a given segment of road could not, simultaneously, be in two watersheds at once.



Fig. 2. Boundaries of watersheds in Jiangxi, 1474 watersheds (a) and 654 watersheds (b).

Fig. 3. Watershed maps overlaid with the road network, 1474 watersheds (a) and 654 watersheds (b).
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The final step assigns all of the pixels in the watershed the same name as the watershed. This means that all 166,932
pixels in Jiangxi have one of four names—expressway pixel; province-level highway pixel; other road pixel; or no road
pixel.6 Appendix C also provides a more detailed explanation of the pixel labeling process.
6 It is important to remember that since watersheds are of different sizes and since the distance of any given pixel in a watershed to the road is

different, not all pixels within each of the watersheds have equal access to the road. While this feature of the data is unavoidable, it may add some error to
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2.1. Other control variables

In addition to information on forested area and roads, other data are used to create control variables for the other
factors, all of which have been consistently found to causally affect deforestation in a review paper by Kaimowitz and
Angelsen [31]. When looking at empirical literature on the determinants of forest cover, there are four broad categories of
variables: geographic and climatic variables [8]; demographic and economic variables [8,30]; measures of distance from
the forested plots to different features (such as, distance to the nearest city) [2,9]; and other factors, such as whether or not
the pixel is in a protected area. In order to make our analysis as consistent as possible with the existing literature, we have
collected information on these four sets of variables.

With our data we are able to create seven measures of geographic and climatic factors. The data for measuring rainfall

(measured in millimeters per year) and temperature (measured in accumulated degrees centigrade per year) are from the
CAS data center but were initially collected and organized by the Meteorological Observation Bureau of China from more
than 600 national climatic and meteorological data centers. For use in our study, we take the point data from the 15
climate stations in Jiangxi and interpolate them into surface data using an approach called the thin plate smoothing spline
method [32]. The elevation and terrain slope variables, which measure the nature of the terrain of each county, are
generated from China’s digital elevation model data set that are part of the basic CAS database. Information on the
properties of soil also is part of our set of geographic and climatic variables from the CAS data center. Originally collected
by a special nationwide research and documentation project (the Second Round of China’s National Soil Survey) organized by
the State Council and run by a consortium of universities, research institutes and soils extension centers, we use the data to
specify three variables: the nitrogen content of the soil (nitrogen—measured in percent); available phosphorous in the top
soil (measured in ppm); and soil pH value. Using a Kriging algorithm [33], we are able to interpolate the soil information to
surface data to get more disaggregated information on the property of the soil over space for each pixel.

We use two demographic and economic variables, population and the level of gross domestic product per square
kilometer (GDP). The demographic data for 1995 and 2000 are from the Population Statistical Yearbook for China’s Counties

[34,35]. Information on GDP for each county for 1995 and 2000 are from the Socio-economic Statistical Yearbook for China’s

Counties [36]. When there are missing data in the yearbook, the information is supplemented by each province’s annual
statistical yearbook for 1995 and 2000. In order to get pixel-specific measures of the demographic variables we use an
approach called the Surface Modeling of Population Distribution framework to interpolate the data across space (measured
as persons/square kilometer) [37,38]. The level of GDP (GDP per square kilometer) is also interpolated across space using
commonly available GIS algorithms [38–40].

We also created two measures of distance (measured in kilometers), defined separately for each pixel in our sample.
Distance to the provincial capital is measured as the distance (by the shortest road route) from each pixel to Nanchang,
Jiangxi’s provincial capital. Distance to the nearest urban core is generated by measuring the distance by the shortest road
route from each pixel to the nearest county seat or other major urban center.

Finally, we also obtained data for one other factor: a dummy variable that is equal to one if the pixel is in a county that
contains a protected area and zero otherwise (protected_area). This information is from a survey that we conducted of the
Environmental Protection Bureaus of all of the counties in Jiangxi. Descriptive statistics for the control variables are
included in Table 1.

Before discussing our formal empirical analysis, we provide a brief preview. Comparing pixels with no roads and pixels
with (different types of) roads, changes in the level of forest cover appear negatively associated with the availability of
roads. Specifically, between 1995 and 2000, the forested area in pixels with no roads rose by 1.02% points from 32.53% to
33.55%.7 In contrast, the forested area in pixels with provincial-level highways (other roads) fell by 0.03% points from
52.43% to 52.40% (by 0.19% points from 49.58% to 49.41%).8

Interestingly, however, not all roads are alike. Forested area in pixels with expressways rises slightly. Given these
descriptive statistics, it appears possible that changes of the forest cover of Jiangxi are being affected by roads.
3. Approach to estimate the effect of access to roads on forests

The basic relationship that we are interested in is:

Forest Areait ¼ a0þa1 � Access to Roadsit�jþeit , ð1Þ

where Forest Areait is the area of the forest in pixel i in year t; Access to Roadsit� j is a measure of the nature of the largest
road that ran through the watershed which contains pixel i in year t� j; and a1 is our coefficient of interest. We use a lagged
(footnote continued)

our explanatory variable. It is for this reason, in part, that we also redo the analysis with road pixels redefined as a ‘‘road pixel’’ only if the road actually

passes through the pixel. When doing this analysis, there is no measured effect of roads on the forest.
7 In addition, it is important to note that this is equivalent to 1.02 ha/1 km2 pixel.
8 It is important to note that although it seems like there is not much change in forested area between 1995 and 2000, we should emphasize that

these are means and that there is actually high variability within Jiangxi Province as illustrated in Fig. 1 and in the discussion earlier in this section.



Table 1
Descriptive statistics of the variables at pixel level.

Variable Units Obs. Mean Std. dev.

Dependent variables
Forest area in 2000 Hectare 6666 56.2 35.4

Change in forest area between 1995 and 2000 Hectare 6666 �0.1 5.5

Geographic and climatic factors
Elevation m 6666 251.7 230.0

Terrain slope deg 6666 2.7 3.0

Nitrogen % 6666 0.2 0.0

Available phosphorous ppm 6666 0.8 2.7

Soil pH value – 6666 4.7 0.8

Temperature 1C 6666 16.9 1.3

Rainfall mm 6666 1625.2 110.0

Demographic and economic factors
Population Persons/km2 6666 241.1 259.7

GDP 10,000 yuan/km2 6666 46.1 187.0

Measures of distance
Distance to the nearest road km 6666 6.4 5.5

Distance to the provincial capital km 6666 134.0 70.7

Distance to the near urban core km 6666 110.2 74.9

Other factors
Bufferforest10 (forest area in a 10 km2 buffer) km2 6666 59.3 24.0

Protected_area (=1 if protected area, 0 otherwise) – 6666 0.2 0.4

Road density m/km2 6666 53.9 48.6
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measure of access to roads to help reduce some of the potential endogeneity bias, since changes in forest cover between
1995 and 2000 should have no direct effect on roads in 1995.

Since we are interested in the impact of whether there is a road in the watershed (or not) as well as the type of road
(expressway vs. province-level highway vs. other road), we define Access to Roadsit� j in four different ways. In model 1.1
we will include in our sample only the expressway and province-level highway pixels and Access to Roads1.1it� j will equal 1
if the pixel is an expressway pixel and will equal 0 if the pixel is a province-level highway. This is called Treatment 1 in the
rest of the manuscript. Note, the other road pixels and no road pixels are excluded from the analysis when we use Access to

Roads1.1it� j. In the estimation of model 1.1 a1.1 will measure the effect on forest area of changing a highway system from a
province-level highway to an expressway.

In model 1.2, we will include in our sample only the expressway, province-level and other road pixels and Access to

Roads1.2it� j will equal 1 if the pixel is either an expressway pixel or a province-level highway pixel and will equal 0 if the
pixel is an ‘‘other road pixel.’’ In the estimation of model 1.2 a1.2 will measure the effect on forest area of changing a
highway system from some other road to either an expressway or province-level highway. This is called Treatment 2. The
roadless pixels are dropped from the analysis when we work with model 1.2.

In models 1.3 and 1.4 we use the full sample. The empirical exercise in model 1.3 will be like that of model 1.2, except
we set Access to Roads1.3it� j=0 when the pixels are either other road pixels or no road pixels. In this way, the interpretation
of a1.3 becomes the effect on forest area of changing a highway system from some other road to either a province-level
highway to an expressway or of building a province-level highway or expressway to a previously roadless watershed
(Treatment 3). In model 1.4, we set Access to Road1.4it� j=1 if there is any type of road in the watershed and set it to 0 if
there is no road in the watershed. The interpretation of a1.4 becomes the effect on forest area of building any type of road to
a previously roadless watershed (Treatment 4). Table 2 summarizes the different treatments that we will be conducting by
estimating models 1.1–1.4.

Eq. (1) is problematic for several reasons. Pixels in watersheds with expressways are likely to differ from those in
watersheds without any roads (or with only minor roads) in many ways. They may have easier topography and more
productive soils along with unobserved locational advantages, since richer areas (or areas with more development
potential) are more likely to attract investment in roads. Hence, applying OLS to Eq. (1) is likely to give biased and
inconsistent estimates. Indeed, as discussed above, previous work suggests many other factors that might affect forest area
and since some are likely to be correlated with both forest area and access to roads, we can reduce omitted variable bias by
controlling for as many variables are possible [2,8,9,30]. This gives the model:

Forest Areait ¼ a0þa1 � Access to Roadsit�jþa2 � Ziþeit , ð2Þ

where in addition to the variables and parameters in Eq. (1), the specification of Z in Eq. (2), includes seven measures of
geographic and climatic variables (rainfall, temperature, elevation, terrain slope, nitrogen, available phosphorous and soil pH

value); two measures of demographic and economic variables (population, GDP); two measures of distance variables
(distance to the provincial capital, distance to the nearest urban core) and one other variable (protected_area,). Since 9 of the



Table 2
Definition of treatment and control variables for four alternative treatments.

Alternative treatment Treated—the largest type of road that goes

through the watershed is:

Control—the largest type of road that goes

through the watershed is:

Expressways Province-level

highways

Other

roads

No

roads

Expressways Province-level

highways

Other

roads

No

roads

Expressways vs. province-level highways (Treatment 1) X X

Expressway and/or province-level highways vs. other

roads (Treatment 2)

X X X

Expressway and/or province-level highways vs. other

roads or no roads (Treatment 3)

X X X X

Expressway and/or province-level highways and/or other

roads vs. no roads (Treatment 4)

X X X X
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12 variables in Z—all except population, GDP and distance to the nearest urban core—vary only across space, we include only
an i subscript on Z.9

While adding covariates to an OLS regression (as in Eq. (2)) allows differences in the average values of observed
characteristics to be controlled for, many studies show that this is a relatively inflexible and unsuccessful way to deal with
the sample selection problem that occurs when observations in non-experimental studies cannot be randomly assigned to
‘‘treatment’’ and ‘‘control’’ groups. On the other hand, matching is an increasingly popular non-experimental evaluation
method, with proponents claiming that it can replicate experimental benchmarks when appropriately used [41]. In
particular, matching offers a way of structuring non-experimental data to look like experimental data, where for every
subject in the ‘‘treated’’ group, the researcher finds comparable subjects in the ‘‘control’’ group.

In other words, while adding Z may help control for some of the factors that might create an omitted variables bias
problem when estimating a1, using ordinary least squares (OLS) assumes that simply conditioning linearly on Z variables
suffices to eliminate selection bias. While the linear model can approximate a given non-linear function of the Z arbitrarily
well when sufficient higher order terms are included, most of the linear regression models in the deforestation literature
do not include higher order terms. Hence, for such models, using the standard OLS estimation approach would also be
biased.

4. Matching methodology

The matching method is an alternative approach that can be used to examine the impact of a treatment (in our context,
existence of particular types of roads) on an outcome (in our case, forested area) when selection takes place on observable
characteristics [42]. As with the OLS model, measuring the effect of roads on forest cover without bias using the matching
method assumes that the outcome in the base state (forested area if the pixel was not in a watershed with a particular type
of road) is independent of the treatment (in watershed without such roads), conditional on observed covariates Z. In other
words, for pixels within subgroups defined by Z, being located in a watershed with roads is unrelated to what the forest
cover would be if the pixel were not in a watershed with roads. This is the so-called conditional independence assumption.
If this assumption holds, we can say that given the observable covariates, the forest cover of the control pixels are what the
forest cover of the treated pixels would have been had they not had the particular types of roads.

Unlike OLS, however, matching works by finding a control pixel that is very similar to the treatment pixel by
conditioning on Z variables nonparametrically rather than linearly [43]. Moreover, with matching methods, but not OLS,
we can impose ‘‘common support,’’ which excludes treated pixels for which we cannot find reliably similar control pixels.

To take advantage of these factors, we follow the recent literature and match every treated pixel with a control pixel
using covariate matching and its variants. With covariate matching [44], we estimate the average treatment effect by
comparing outcomes between treated observations—pixels in a watershed with a specific type of road—and control
observations—pixels in a watershed without the specific type of road.

Covariate matching, the method created by Abadie and Imbens [44], matches directly on covariates. In our analysis, we
choose to match the two nearest neighbors with the same (similar) covariates (Z), where the variables in Z are the same as
in the OLS model. Within these pixels, we can then directly estimate E(Yi19Ti=1, Zi) and E(Yi09Ti=1, Zi). This approach means
that once we have a matched sample, we compare the forested area of the treated pixel with the forested area of the
9 To avoid over-controlling, we do not include in the Zi matrix of Eq. (2) three explanatory variables that are independent controls for roads—distance

to the nearest roadi, road densityi or bufferforest10i. These variables are introduced, however, in the robustness analysis. These variables are measured as

follows. The variable distance to nearest road measures the distance from each grid cell to the nearest road of any type. We generated the variable road

density within the watershed by measuring ‘‘the length of all roads per square kilometer (m/km2)’’. We also created a variable bufferforest10 to identify if a

pixel is surrounded by forested area or not. At the very least, this measure helps us gage how far to the ‘‘edge of the forest’’ is any given pixel—which also

helps control for the distance that a pixel is from a road.
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control pixel. We also report the estimated coefficients that use the post-matching bias correction factor also developed by
Abadie and Imbens [44]. This correction factor is needed to correct for the conditional bias in finite samples when there are
three or more continuous variables. Based on recent work that demonstrates that bootstrapping standard errors are invalid
with non-smooth nearest neighbor estimators [48], we use Abadie and Imbens’s variance formula for nearest-neighbor
estimators. With covariate matching, we report the results using two weighting matrices. One approach uses the inverse
variance weighting scheme; the other uses the Mahalanobis metric weighting scheme.
5. Two definitions of the dependent variable: forest area and change in forest area

In addition to using matching, we also have a data set that can help us control for part of the unobservables that might
be leading to biased estimates of our parameters of interest. Specifically, we have two dependent variables of interest, in
contrast with many studies on roads and deforestation that just use cross-sectional data on forest area. Such a cross-
section may merely illustrate the correlation between where roads and forests are (i.e., which areas are more remote and
which areas are more developed). There may be concerns about giving a causal interpretation to the estimated coefficients
from such a model, which will be biased if the observable covariates are correlated with unobservable fixed effects, gi:

Forest Areait ¼ a0þa1 � Access to Roadsit�jþa2 � Ziþgiþeit , ð3Þ

One way to deal with these time-invariant unobservable variables is to estimate a first differenced model, which is
partially possible since we have two years of land use data for each pixel in Jiangxi Province. In other words we can
difference out some of this bias by estimating:

Forest Areai2000�Forest Areai1995 ¼ a0þa1 � Access to Roadsit�jþa2 � Ziþeit , ð4Þ

which compares the change in forested areas for pixels with and without access to roads, and so is a difference-in-
differences estimator.10 Therefore, in the rest of our analysis, we report estimates for all of the models using two
dependent variables—forest area in 2000 and the change in forest area between 1995 and 2000.
6. Spatial scale issues

The basic unit of observation in our study is the 1 km2 pixel, of which there are 166,932 in Jiangxi. There is a high
correlation in forest cover between neighboring pixels and a lesser but still statistically significant correlation in the
residuals of the OLS estimates of Eq. (2).11 At the very least, this spatial autocorrelation can lead to inefficiency and invalid
hypothesis testing procedures but it may also cause biased and inconsistent parameter estimates if spatial interactions are
present such that a spatially lagged dependent variable belongs in the model [45].

We take three approaches to dealing with this spatial autocorrelation problem. First, rather than using all pixels we take
a 1-in-25 sample by choosing only the pixels at the vertices of a 5 km�5 km grid. This approach, which is widely used in
econometric studies of deforestation, greatly reduces the spatial autocorrelation [4,7].12 Second, since we use matching
methods this eliminates even more of the spatial autocorrelation because every treated pixel is matched with a control
pixel from a different watershed. Except for the extreme case where the two matched pixels share a common watershed
boundary, the pixels are unlikely to be adjacent neighbors.

Our third strategy is to also estimate the model at the watershed level (in addition to estimating the model at the pixel
level). This is somewhat akin to sampling in that it involves a loss of information, this time due to aggregation. However,
since the effective sample size in the presence of spatial autocorrelation is much lower than the number of pixels (given
that neighboring pixels have highly similar information) this may be appropriate. We note that aggregating (or smoothing)
pixel data results in the loss of intra-watershed spatial variability. The greater the variability in forest cover within the
watershed (i.e., the smaller the spatial scale at which the process operates), the less accurate the aggregate as an estimate
for the dependent variable. Moreover, the within watershed variability is not likely to be constant across units, resulting in
heteroskedasticity [46]. In our data, in fact, we have high variability in forest cover and forest cover changes within each
watershed, so we should be concerned about the bias due to this factor. But when we compare estimation results for the
1474 watershed and 654 watershed aggregations, we find it is unlikely that the findings of the paper are affected by the
aggregation level used to define watersheds.
10 In principle the right-hand side variables could also be first-differenced, so that the effect of change in road access on change in forest cover which

was estimated. However this fully differenced model is not feasible in the current case since we have only a single cross-section for the right-hand side

variables. This restriction may not matter too much since many of the right-hand side variables are likely to be time-invariant over the short time period

studied. Moreover, just differencing the dependent variable reduces the impact of the unobservable fixed effects.
11 The Moran I statistic is 0.73 for the dependent variable and 0.49 for the residuals. Intuitively, this statistic is equivalent to the slope coefficient of a

linear regression of the weighted average value of forest cover (residuals) for the pixels surrounding the ith pixel on forest cover (residual) in pixel i.
12 The Moran I statistic falls to 0.47 for the dependent variable and 0.13 for the residuals.
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7. Summary of our estimation approach

Given the proceeding discussion, in order to estimate the effect on forest area of access to roads, we take the following
approach. First, we estimate Eqs. (1) and (2) and using OLS. Next, we use a covariate matching approach, using two
algorithms—‘‘covariate matching using an inverse variance weighting scheme’’ and ‘‘covariate matching using a
Mahalanobis weighting scheme.’’ We use these estimators to analyze the effect of roads on the forest and do so holding
constant (in the case of our OLS estimators) and matching on (in the case of our covariate matching estimators) a set of
covariates that are described above.

In order to check the robustness of our results, we first report the models excluding four variables that may be
correlated with our treatment variable and then add them one by one for robustness checks with one of the Access to Road

variables (Treatment 4). Furthermore, we estimate all our equations using both level of forest area in 2000 (Forest Areai2000)
and the changes in forest area Forest Areai2000–Forest Areai1995=D Forest Areai) both using pixels and watersheds as the
units of observation.
8. Results

The simple linear regression using OLS (with no controls and when we divide Jiangxi into 1474 watersheds) produces
results that are similar to those found in the descriptive analysis above (Table 3, row 1). Regardless of the definition of the
roads variable (Treatments 1–4), the larger the road in the mid-1990s (or if there is any road vs. no road), the lower the
forest area in 2000. The signs on the coefficient of the roads variable are negative and significant in seven of the eight
columns. In other words, when we use any treatment variable and when using observations at either the pixel or
watershed level, there is a negative and significant relationship between roads in one period (1995) and forests in the next
period (2000). Examining the magnitude of the coefficients demonstrates that the presence (or size) of a road, when we do
not control for other factors, is associated with land that has 4.951–13.780% less forested area.

Importantly, however, as soon as we add the 12 covariates defined above to the OLS model, the negative association
between roads in the mid-1990s and the level of the forest area in 2000 disappears (Table 3, row 2).13 Regardless of the
treatment or the level of observation (watershed or pixel), point estimates of the relationship between roads and forest
area are positive in seven out of eight models, and two are statistically significant. In only one case is the coefficient on the
road variable negative and in this case the t-ratio is small (0.25—Table 3, row 2, column 8). The two positive (and
significant) coefficients (2.830—column 1; and 2.141—column 5) also are quite small.14 Therefore, the most accurate
interpretation of the findings when we estimate Eq. (2) is that roads have no impact when it comes to influencing Jiangxi’s
forest area. In other words, it seems clear from our findings that the results are at least not negative. What is also clear from
our findings is that the previous negative relationship between roads and forest area (Table 3, row 1) is an artifact of an
overly restrictive specification that excludes relevant covariates.

The absence of an impact of roads in the mid-1990s on Jiangxi’s forest area in 2000 is reinforced when we use the two
covariate matching approaches to estimate treatment effects (Table 3, rows 3 and 4).15 Regardless of the treatment variable
and whether we use pixels or watersheds as our units of observation, there are no cases where we find a negative and
significant impact of roads on forest area. In fact, in 13 of 16 different models the signs on the road variables are positive
(although they are significant in only one case). Hence, we can most accurately classify the result as having no effect. In
other words, in our analysis there is no evidence to suggest that roads are creating pressures on forest area. In this way, our
results are more similar to those of Andersen et al. (2002), who find a positive relationship between roads and forests than
findings of others who have estimated a negative relationship.
13 Although for most of our results we present only the coefficient of interest (that is, the coefficient that measures the impact of Treatment 1 or 2 or

3 or 4 on the forest or forest change), the interested reader is directed to JEEM’s online archive (http:/aere.org/journals). This archive includes several

tables that present all of the coefficients.
14 Because we might be concerned that there are different effects of roads on different types of forests, we have rerun the model with forest type ‘‘a’’

(closed-canopy forest) as the dependent variable instead of total forest area (a+b+c+d). The results (not shown for brevity) show that roads are actually

associated with slightly slower deforestation of closed-canopy forests. Importantly, although the coefficient was negative and significant, it should be

noted that the magnitude of the coefficient is small enough almost to be called zero or immaterial). Although for brevity we do not include the results, we

also found no evidence of the impact of roads on other types of forests (forest types ‘‘b,’’ ‘‘c’’ or ‘‘d’’) in Jiangxi Province.
15 Matching on the propensity score is another common technique. In contrast with the covariate matching method, which uses metrics such as

inverse distance weighting to measure the closeness between the treated and the control, the propensity score matching method requires that the

researcher first estimate a discrete choice model using the covariates and then use the predicted scores to match the treated and the control. We choose

to focus on the covariate method for several reasons. Although in the literature there is no absolute dominance between covariate matching and

propensity score matching, Zhao [47] demonstrates that covariate matching is robust under a number of different settings. Moreover, Zhao also shows

that covariate matching is preferable when sample size is small and when the correlation between covariates and the participation indicator is not high.

In our case, the sample size is not large—especially when we match treated watersheds (N=559) with control watersheds (N=265). In addition, when we

estimate a logit model to describe the treatment, pseudo-R2 is not high, suggesting that the correlation between covariates and the treatment indicator is

not high. Finally, we also favor covariate matching since bootstrapping the standard error in propensity score matching does not provide standard errors

with correct coverage [48]. As a robustness check, we estimated the models using propensity score matching and the results were essentially the same as

the covariate matching method.

http://aere.org/journals


Table 3
Results from ordinary least squares regression approach and covariate matching analyzing the effect of roads on forest cover level in 1474 watersheds in Jiangxi Province.

Dependent variable: forest cover in 2000

Expressways vs. province-level
highways (Treatment 1)

Expressway and/or province-level
highways vs. other roads
(Treatment 2)

Expressway and/or province-level
highways vs. other roads or no roads
(Treatment 3)

Expressway and/or province-level
highways and/or other roads vs. no roads
(Treatment 4)

Pixel Watershed Pixel Watershed Pixel Watershed Pixel Watershed

OLS, no control �7.814 (5.38)nnn �1.863 (0.98) �8.543 (6.99)nnn �4.951 (1.89)n �13.780 (11.84)nnn �6.851 (3.70)nnn �12.156 (11.63)nnn �8.455 (4.26)nnn

OLS, with covariates 2.830 (2.11)nn 2.720 (1.31) 0.780 (0.60) 1.527 (1.00) 2.141 (1.76)n 1.462 (1.02) 1.519 (1.74) �0.406 (0.25)

Covariate matching (inverse variance) 2.764 (1.79)n 3.324 (1.37) 0.689 (0.51) 1.649 (1.04) 0.384 (0.15) 0.869 (0.96) 0.319 (0.41) 0.188 (0.12)

Covariate matching (Mahalanobis) 1.924 (1.13) 1.835 (0.93) �1.017 (0.97) 1.296 (0.72) 0.540 (0.38) �0.157 (0.13) 0.128 (0.11) �0.979 (0.09)

N treated 1240 153 2908 328 2908 328 5076 559

N available controls 1191 131 995 120 1606 479 1590 265

Notes: In this analysis we were unable to use all pixels due to the fact that the number of observations is too large for conventional statistical software to handle. Therefore, we created a data set that was

composed of every 25th pixel chosen by regular grid sampling. Absolute value of t-statistics in parentheses for OLS and z statistics otherwise. Calipers restrict matches to units within 0.5 standard deviations of

each covariate. Covariate matching includes all covariates.
nnn Significant at 1% level,
nn Significant at 5% level,
n Significant at 10% level.
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In consideration of avoiding the problem of ‘‘over-controlling,’’ we specified the regression that was used in creating the
results in Table 3 in a way so that the analysis did not include any other roads-like variables in the regression. In other
words, in Eq. (2) we did not include pixel-specific measures of road access: distance to the nearest road, road density or the
bufferforest10. It could be, however, that these measures of access to the roads can help control for some degree of
heterogeneity, which will make the rest of our analysis sharper. To examine this, we perform a robustness analysis by
adding these controls (one at a time) to our original specification (i.e., instead of having 12 control variables we have 13
control variables, one of which is an independent, pixel- or watershed-specific measure of access to roads). For the sake of
brevity, we conduct the robustness analysis using Treatment 4 only. When doing so, both results from the OLS models
(with the 13 covariates) and the matching model (matching on 13 variables) demonstrate that the measured effect of roads
on the forest is still zero (Table 4, rows 2–5).

The positive relationship between roads and forest area is in a strict statistical sense also supported by the simple linear
regression of the change in forest area (D Forest Area) on roads (Table 5, row 1). In all of the eight models (considering
different treatments, levels of observation—pixels or watersheds), the signs on the road variable are positive. In two of the
models, the coefficients are positive and significantly different than zero. Considering the magnitude of these two
coefficients, the nature of the roads in the mid-1990s leads to an increase in forest area of between 0.34% and 0.57% points.
Given the small magnitude of the change, while statistically a larger road might be associated with a positive change, it
might be most accurate to say that the magnitude of the change is small—perhaps closer to having no impact than having a
positive in a substantive sense.

After controlling for covariates and after implementing our two matching schemes (Table 5, rows 2–4), our
interpretation of the findings using the change of forest area as the dependent variable continues to be consistent
with the findings when using the level of forest area as the dependent variable. While the point estimates in 20 of 24
models are positive, they are significant only in three (of the 24 models). In the rest of the cases, whether the sign
of the coefficient is positive or negative, statistically there is no discernible relationship between roads and change of
forest area.

The estimation results in Table 5 are carried out with the base model (which does not have any other roads-like variable
in the regression). The robustness analysis (which is carried out by adding three controls (one at a time) using Treatment 4
also can be interpreted as showing that there is no impact of roads on the forests in Jiangxi. These results are in Table 6.

Finally, before concluding that the findings from Jiangxi (that is, there is no impact of roads on forests) differ from that
of many previous studies, we want to make sure that the results hold up to more conventional analysis. To show this,
instead of using our variable of interest (whether or not and what type of roads penetrate the watershed or pixel), we want
to examine the coefficients on more traditional measures of road access (e.g., measures based on straight line distance to a
pixel or watershed, etc.) and using more standard regression approaches (i.e., OLS instead of matching methods). In this
sensitivity exercise, we use two types of data sets (pixels, watersheds) and four different measures of roads (watershed is
roaded; distance to roads; road density; and bufferforest10). The results of the sensitivity analysis (not shown for brevity)
using the more traditional measures of roads also show that there is no impact of roads on change in forest in Jiangxi.
Therefore, the substance of the results using our new approach is also found using more traditional methodological
approaches.16

9. Summary and conclusions

In this paper we have sought to estimate the impact of roads on forest area and change in forest area in Jiangxi,
one of the most forested provinces in China. Using satellite remote sensing data to track changes over time at the 1 km2

pixel level, we have found that Jiangxi experienced a fall in forest cover in the 1990s—although only from 56.3% to 56.2%.
Although there was not much change on average, pixel-level maps showing changes in forested area across the
province reveal that there is a lot of heterogeneity. In some parts of the province, forest area rose between 1995 and 2000;
in other parts it fell. In the rest of the paper we analyzed the determinants of these changes, focusing mostly on the role
of roads.

To estimate the impact of the presence (or the size) of roads on the forest, we developed an empirical framework
in which we assigned pixels—the level of observations on which we can observe forested area—labels indicating whether
or not the 1�1 km2 land area is easily accessible by a major road (and indicating the size of the road that entered the
watershed in which the pixel resided). Holding constant a set of carefully defined geographic and climatic factors, demo-
graphic and economic variables, distance variables and other factors, we sought to measure the net impact of the nature of
the road network in the mid-1990s on level of the forest in 2000 and change of the forest area between 1995 and 2000.
Using both standard OLS with covariates and two covariate matching methods, we found no evidence that roads contri-
buted to deforestation. In other words, according to the findings from three different empirical approaches, when roads
16 We realize the finding of zero impact (as we have in this paper) can be suspect. One could get a negative result if the experiment were poorly

designed. In this paper, the high quality nature of the data minimizes the possibility that our results are due to errors in our data. Our robustness checks

(of which there are many) also support the fact that we are indeed measuring the impact of roads on forest accurately. However, it is possible that if there

were a high degree of spatial variability combined with a small amount of variation in forest cover that the power of the analysis could be low. In this

light, caution in interpreting the results should be exercised.



Table 4
Results of effect of roads on forest cover level from various approaches using alternative specification for checking robustness of results, 1474 watersheds (treatment variable: expressways and/or province-level

highways and/or other roads vs. no roads—i.e., Treatment 4).

Dependent variable: forest cover in 2000

Base model: without distance to road variable;
without road density variable; without
bufferforest10 variable

With distance to road variable With road density variable With bufferforest10 variable

Pixel Watershed Pixel Watershed Pixel Watershed Pixel Watershed

OLS, no control �12.156 (11.63)nnn �8.455 (4.26)nnn �12.156 (11.63)nnn �8.455 (4.26)nnn �12.156 (11.63)nnn �8.455 (4.26)nnn �12.156 (11.63)nnn �8.455 (4.26)nnn

OLS, with covariates 1.519 (1.74) �0.406 (0.25) 0.702 (1.49) 3.385 (2.21)nn �0.119 (0.37) 0.815 (0.41) 0.437 (0.51) �0.248 (0.23)

Covariate matching

(inverse variance)

0.319 (0.41) 0.188 (0.12) 1.151 (1.53) 3.709 (3.14)nnn �0.231 (0.93) 1.971 (0.97) 0.121 (0.06) 0.449 (0.45)

Covariate matching (Mahalanobis) 0.128 (0.11) �0.979 (0.09) 0.110 (0.41) 2.611 (0.99) 0.424 (0.62) 0.307 (0.58) 0.056 (0.21) 0.324 (1.55)

N treated 5076 559 5076 559 5076 559 5076 559

N available controls 1590 265 1590 265 1590 265 1590 265

Notes: Treatment 4 stands for the variable ‘‘expressways and/or province-level highways and/or other roads vs. no roads’’. In this analysis we were unable to use all pixels due to the fact that the number of

observations is too large for conventional statistical software to handle. Therefore, we created a data set that was composed of every 25th pixel chosen by regular grid sampling. Absolute value of t-statistics in

parentheses for OLS and z statistics otherwise. Calipers restrict matches to units within 0.5 standard deviations of each covariate.
nnn Significant at 1% level.
nn Significant at 5% level.
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Table 5
Results from ordinary least squares regression approach and covariate matching analyzing the effect of roads on changes in forest cover in 1474

watersheds in Jiangxi Province.

Dependent variable: forest cover in 2000–forest cover in 1995

Expressways vs. province-
level highways (Treatment 1)

Expressway and/or
province-level highways vs.
other roads (Treatment 2)

Expressway and/or
province-level highways vs.
other roads or no roads
(Treatment 3)

Expressway and/or province-
level highways and/or other
roads vs. no roads (Treatment
4)

Pixel Watershed Pixel Watershed Pixel Watershed Pixel Watershed

OLS, no control 0.602 (2.34)nnn 0.581 (1.61) 0.137 (0.48) 0.142 (0.61) 0.256 (1.83)n 0.307 (1.01) 0.219 (1.26) 0.171 (0.89)

OLS, with covariates 0.640 (1.99)nn 0.457 (1.37) 0.111 (0.53) 0.053 (0.15) �0.328 (1.39) 0.141 (0.95) �0.119 (0.69) �0.392 (1.38)

Covariate matching

(inverse variance)

0.174 (0.46) 0.629 (2.01)nn �0.232 (0.76) 0.071 (0.10) 0.272 (1.66) 0.179 (0.83) 0.160 (0.90) 0.324 (1.19)

Covariate matching

(Mahalanobis)

0.277 (0.81) 0.615 (3.03)nnn 0.059 (0.21) 0.059 (0.36) 0.363 (1.48) 0.152 (0.69) 0.185 (0.35) 0.304 (1.05)

N treated 1240 153 2908 328 2908 328 5076 559

N available controls 1191 131 995 120 1606 479 1590 265

Notes: In this analysis we were unable to use all pixels due to the fact that the number of observations is too large for conventional statistical software to

handle. Therefore, we created a data set that was composed of every 25th pixel chosen by regular grid sampling. Absolute value of t-statistics in

parentheses for OLS and z statistics otherwise. Calipers restrict matches to units within 0.5 standard deviations of each covariate. Covariate matching

includes all covariates.
nnn Significant at 1% level.
nn Significant at 5% level.
n Significant at 10% level.

Table 6
Results of effect of roads on changes in forest cover from various approaches using alternative specification for checking robustness of results, 1474

watersheds (treatment variable: expressways and/or province-level highways and/or other roads vs. no roads—i.e., Treatment 4).

Dependent variable: forest cover in 2000–forest cover in 1995

Base model: without distance to

road variable; without road

density variable; without
bufferforest10 variable

With distance to road variable With road density variable With bufferforest10 variable

Pixel Watershed Pixel Watershed Pixel Watershed Pixel Watershed

OLS, no control 0.219 (1.26) 0.171 (0.89) 0.219 (1.26) 0.171 (0.89) 0.219 (1.26) 0.171 (0.89) 0.219 (1.26) 0.171 (0.89)

OLS, with covariates �0.119 (0.69) �0.392 (1.38) 0.082 (0.41) �0.071 (0.36) �0.820 (0.54) �0.214 (1.03) 0.130 (0.89) �0.102 (0.66)

Covariate matching

(inverse variance)

0.160 (0.90) 0.324 (1.19) �0.168 (0.46) 0.129 (0.35) �0.163 (0.74) �0.450 (0.29) 0.475 (0.51) 0.467 (1.57)

Covariate matching

(Mahalanobis)

0.185 (0.35) 0.304 (1.05) 0.037 (0.22) �0.069 (0.55) 0.205 (1.28) �0.225 (1.52) 0.195 (0.76) 0.253 (1.71)

N treated 5076 559 5076 559 5076 559 5076 559

N available controls 1590 265 1590 265 1590 265 1590 265

Notes: Treatment 4 stands for the variable ‘‘expressways and/or province-level highways and/or other roads vs. no roads’’. In this analysis we were unable

to use all pixels due to the fact that the number of observations is too large for conventional statistical software to handle. Therefore, we created a data set

that was composed of every 25th pixel chosen by regular grid sampling. Absolute value of t-statistics in parentheses for OLS and z statistics otherwise.

Calipers restrict matches to units within 0.5 standard deviations of each covariate.

***significant at 1% level, **significant at 5% level, *significant at 10% level.
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were either widened or improved or when roads penetrated into a watershed, they did not appear to be adding any
pressure to the forests. If anything, there is weak evidence that roads relieved a bit of pressure off the forests.

While our results run against the hypothesis that roads are the trigger of deforestation, they are consistent with some
areas outside China. One way to reconcile these findings is that a negative relationship is found when roads penetrate into
an area that has not been settled for very long or in which population densities are low. In this case, roads are a tool to haul
away timber and non-timber forest products and reduce the cost of those wishing to use the land resources (e.g., for
farming or livestock). These activities could account for the negative relationship between roads and forest area.

However, when an area is long settled, and when population densities are fairly high, it is possible that when roads
enter an area (or are improved), they can act as a way to reduce the cost of moving out of the region or reduce the cost of
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technologies that will encourage more intensive cultivation/use of land resources in non-forested areas. If this were the
case, roads could lead to less pressure on the forest, eventually rising forest area.

Clearly if these two interpretations are true, it is possible that our findings are accurately portraying the situation in
Jiangxi. Jiangxi Province has been settled for thousands of years. The population pressures in many regions of the province
become quite high. With China’s fast growth, there are increasing opportunities for out-migration. Hence, if roads in any
way encourage out-migration, and if out-migration reduces pressure on forests [16], then our results may be reasonable.
Of course, Jiangxi has valuable forest resources. Roads would still reduce the cost of exploiting the forests. Because we are
looking only at forest area, we are not able to discern if the quality of the forest is rising or deteriorating. It could be that
roads are both increasing certain pressures and reducing them at the same time. If so, then the absence of a measured
effect is showing the net position of several forces. Future research might want to try to understand the impact on value of
the forest and other eco-services provided by forests.

Because the scope of this paper is so ambitious, we must necessarily draw some limits. First, we recognize that we have
grouped different types of forests into a single measure. As a result, we are unable to measure the transition between
different types of forests (e.g., from dense to sparse). If roads affect this transition, but do not lead to deforestation, we will
be ignoring these impacts.

In addition, we are also able to measure only the impact of the stock of roads in 1995 on the forest. We do not have
data on which of the roads are new and which have been around for a period of time. Consequently, the available data do
not allow us to separately identify the impacts of roads separately from the impacts of all of the history of
human settlement and activity, which is likely correlated with where the roads have been placed over time. Both this
historical human activity and roads may shape the current spatial pattern of the forest, making it hard to identify the impact
of roads per se. However there is less reason to believe that this omitted history will affect the recent change in forest cover,
so the similarity of our results showing neutral impacts of roads on both the level and change in forests reduces concern
about possible biases in our estimated impact of roads. Future research could consider searching for instrumental variables
that show why roads developed over time in some parts of Jiangxi but not others, although with the current scale of road
building and improvement in China a more forward-looking research strategy may be more productive.
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