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social learning. This paper addresses the gap by modeling social learning as a way of reducing
parameter uncertainty, thus facilitating technology adoption and shortening the waiting
time in irreversible investments. We use household-level data on intermediate-technology
greenhouse adoption in northern China to test the predictions in both a linear probability
model and a duration analysis. Our empirical findings support the hypothesis. We also find
that market volatility and insecure land property rights discourage adoption.
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1. Introduction

Profitability long reigned as the central explanation of adoption and diffusion of new agricultural technologies (Griliches,
1957; Hayami & Ruttan, 1971).1 Lags and shortfalls in diffusion in the Green Revolution era led agricultural economists to
emphasize the role of risk and uncertainty in adoption and diffusion (e.g., Feder, 1980; Roumasset, 1976). They were included in
studies of Green Revolution technology adoption to explain lagged or partial adoption or even disadoption. This can be seen as
part of a broader literature on the economics of risk and uncertainty and their constraining effects on investment (Newbery &
Stiglitz, 1981).
ive factor prices and output price) in explaining diffusion of agricultural technology was challenged by
y noted that factors such as farmer–seed supplier interactions, crop composition, and regional settlement
ends in US agricultural technology. They examined, however, evolving technologies and inter-regional
study's scope as our empirical case is that of adoption of a fixed technology and a single region.
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Information reduces farmers' uncertainty about the payoffs to adopting a new technology. The literature has examined the
methods by which farmers receive information in order to evaluate new technologies and operate them well. These methods
include receiving information from extension agents, from other farmers (“learning from neighbors”), and from their own
experience (“learning by doing”) (Besley & Case, 1994; Foster & Rosenzweig, 1995).

The role of “learning from neighbors” has been further refined in recent work on “social learning”. Four recent papers
exemplify this work. Conley and Udry (2001, 2010) model Ghana farmers' adoption of fertilizer in pineapple production,
conditioned by their incomplete information and communication networks with neighbors. Bandiera and Rasul (2006) model
Mozambique farmers' adoption of sunflowers conditioned by their social network (neighbors and friends who have adopted).
Munshi (2004) models Indian farmers' adoption of HYV seeds of rice and wheat conditioned by neighbors' experiences. These
papers demonstrate the effects of social learning on technology adoption. In most cases social learning's effect is interpreted
as increasing the capacity of the farmer to adopt as well as reducing the farmer's uncertainty and perception of risk in
adoption.

The studies of the impacts of social learning on adoption have, up to now, focused on reversible technologies, such as the
examples of those on new crops and new seeds above. But the adoption literature has not yet addressed the issue of how social
learning, through its role in reducing risk and uncertainty, conditions adoption of irreversible investments in capital-embodying
technology, such as tube wells and greenhouses. Irreversible investments such as building a greenhouse are characterized by the
salvage value of the asset being negligible or the asset not being able to be transferred or sold. Because of incomplete information
with respect to the performance, reliability, and appropriateness of agricultural equipment, irreversibility entails substantial risk
for the investor (Dixit & Pindyck, 1994; Sunding & Zilberman, 2001).

The ability to delay an irreversible investment can be considered as a real option; a higher level of uncertainty
regarding future benefits raises the option value and causes the investment decision to deviate from the classical NPV
rule.2 Specifically, investors may rationally delay investment to gain additional information, reduce the level of uncertainty, and
increase discounted expected payoffs. While investment delay in the face of uncertainty has been studied in the
economics literature (Dixit & Pindyck, 1994; Hassett & Metcalf, 1995; McDonald & Siegel, 1986; Nelson & Amegbeto,
1998; Zilberman, Sunding, Howitt, Dinar, & MacDougall, 1994), this literature has tended to assume that all parameters of
the dynamic process are known to agents, and the only uncertainty in the model comes from the future value of the
dynamic process.

In contrast, we present a new model wherein, following McDonald and Siegel (1986), we assume that a farmer is
considering an investment project, the value of which follows a geometric Brownian motion. Departing from the standard
framework, we assume that the true drift of the Brownian motion is unobservable to the farmer (we call this “parameter
uncertainty”). In essence, the farmer is imperfectly informed as to the expected rate of return of the farmer's investment. He/
she must make an inference about the true expected return based on their information and, at the same time, determine the
optimal timing for investing in the project. The farmer can learn about the unknown parameter in two ways: by extracting
information on the true drift from a continuous observation of past realized returns on the project value; and by obtaining
discrete noisy signals of the true drift. This latter channel represents the process of social learning from early adopters in the
farmer's social network.

Furthermore, we empirically model greenhouse investments with primary data collected by the authors in the Shandong
province of China. We test both whether social learning induces adoption, and whether social learning shortens the waiting time
until adoption, using a duration analysis. The data are multi-year, observing the characteristics, including their social network of
prior adopters, of the adopters the year before their adoption. Thus, new to this literature, we capture causality of social learning
and adoption.

Previously, investment under parameter uncertainty has been examined in the finance literature. Gennotte (1986) studies
portfolio choice under incomplete information about the stock return process. The study uses tools of nonlinear filtering to
derive the optimal drift estimator as agents continuously observe the returns. Brennan (1998) and Xia (2001) construct
similar models to examine how learning about unknown parameters and unknown predictability affects portfolio choice.
Huang and Liu (2007) model learning from discrete noisy signals about the true drift in their study of periodic news on
portfolio selection.

The finance literature modeling investment under parameter uncertainty is primarily theoretical, with few empirical
applications and none in the domain of investment in agricultural capital as an embodiment of agricultural technology
adoption. The present paper addresses this gap in the literature. We analyze irreversible investment under parameter
uncertainty, modeling the effect of social learning. The contribution to filling the gap in the literature is both theoretical and
empirical.

The rest of the paper is organized as follows. First, we present the theoretical model. Second, we provide background
information about greenhouse technology in northern China. Third, we discuss our sample selection and summarize the data.
Fourth, we explain our empirical methodology. Fifth, we present the empirical findings from linear probability models and a
duration analysis. Finally, we conclude with a summary and policy implications.
2 The NPV rule could be misleading under irreversible investment because it ignores the fact that the delaying of adoption has its own value, which has to be
included as a part of the cost of the investment.
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2. The model

We use a real option model to articulate the effect of social learning on technology adoption.3 We begin with a model of
continuous learning, which is essentially that of Abasov (2005). Specifically, a farmer is considering whether to pay a sunk cost of I
to start a project with a new technology, whose value Vt evolves according to:
where
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dVt ¼ Vt μdt þ σdZtð Þ; ð2:1Þ

Zt is a standard Brownian motion and μ and σ are its drift and volatility, respectively.
where
Motivated by Merton (1980), the farmer can observe Vt continuously and estimates its volatility σ; however, he/she only

knows that the drift μ is a normal random variable with mean m0 and variance γ0 in the beginning.4 According to Lipster and
Shiryaev (1978), the conditional mean of the drift given the farmer's information set FtV (which contains the history of the project
value up to time t), mt = E(μ|FtV), follows:
dmt ¼
γt

σ
dZ′

t ; ð2:2Þ

γt = E[(μ − mt)2|FtV] is the conditional variance of the drift, satisfying:

dγt ¼ − γ2
t

σ2 dt; ð2:3Þ

t is a Brownian motion with respect to the farmer's information set FtV. The process Z′
t is related to the original Brownian
and Z

motion through:
dZ′
t ¼ dZt þ

μ−mt

σ
dt: ð2:4Þ
We can solve Eq. (2.3) for γt:
γt ¼
γ0σ

2

γ0t þ σ2 : ð2:5Þ
This result shows that continuous learning decreases the conditional variance of the unknown parameter. Thus the longer the
farmer observes the value process, the less uncertain he/she is about the drift. This is consistent with the results of Merton (1980):
the uncertainty of the drift is not related to the number of observations, but rather to the length of the observation period.
However, the conditional mean of the drift can fluctuate up or down, depending on new observations of the Brownian motion Zt

' .5

According to Gennotte (1986), the farmer's decision can be separated into two problems: 1) the inference of the unknown
parameters given the farmer's information set FtV and 2) the farmer is seeking to maximize his/her expected utility by choosing
the time (the optimal stopping time) to make the investment. Putting everything together, we can characterize the farmer's
problem using observable processes:
J m0;γ0;V0ð Þ ¼ max E
τ∈FV

e−ρτ Vτ−Ið Þ� �
;

s:t: dVt ¼ Vt mtdt þ σdZ′
t

� �
;

dmt ¼
γt

σ
dZ′

t ;

dγt ¼ − γ2
t

σ2 dt:

ð2:6Þ
Here, J is the farmer's value function assuming that the optimal investment policy is followed, σ is the discount rate, and τ is an
FtV-stopping time, reflecting the fact that the farmer must make a decision based on the available information. The stopping rule
takes the form of:
τ ¼ inf t≥0 : Vt≥V� mt ;γtð Þ� �
; ð2:7Þ

V∗(mt,γt) is the trigger value of investing, which depends on the state variables.6
value of the Brownian motion model is to provide an explicit mechanism to show how social learning facilitates greenhouse adoption when farmers face
ersible investment under uncertainty.
ton (1980) shows that the variance of the return can be estimated precisely from continuous observations on a finite interval, but not the mean return
he length of the interval becomes large.
bserving the project value Vt, the farmer can compute the conditional drift mt and infer Z′

t . Since he/she does not observe the true drift μ, the original
n motion Zt is not observed. In a world where μ is known, Z′

t simply becomes an Ito process with respect to the Brownian motion Zt and dZ′
t and dZt are

y correlated.
e γt is a deterministic function of t, we can equivalently formulate the problem in terms of state variables (mt,t).
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To understand the intuition of the solutions to the farmer's optimization problem, recall that in the standard real option
problem of McDonald and Siegel (1986) and Dixit and Pindyck (1994) without parameter uncertainty, the trigger value of
investing increases with the drift μ and volatility σ of the project value. The intuition is that greater drift and volatility encourage
the investor to wait because they make it more likely that the investor will receive a higher project value in the future.

Abasov (2005) derives the Hamilton–Jacobi–Bellman equation for the optimal stopping problem (2.6) and transforms it into a
linear complementarity problem, which he solves with the finite difference method. His numerical results demonstrate that the
trigger value of investing, V ∗(m,γ), obtained as a part of the solution, increases with m and γ. This result is consistent with the
conditional drift m replacing the observed drift μ in the standard real option problem, and the fact that parameter uncertainty
(through the conditional variance of the drift) further contributes to the overall uncertainty surrounding the project value.

In developed countries, there are public economic forecasts and newsletters informing investors. Therefore, agents can make
inferences based on past realized returns. However, in rural China, information is more likely to come from local private sources. Similar
to Huang and Liu (2007), we allow farmers to obtain direct signals of the drift from early adopters in their social networks. These signals
are noisy, reflecting the fact that even early adopters are unlikely to learn everything about the technology from their own experience.
Different from Huang and Liu (2007), we assume that the signals are costless. However, the number of signals to which a farmer has
access is limited by the scope of his/her social network, whichwe take as exogenous. For simplicity, we also assume that these signals are
received at time 0, just as the farmer begins to consider the adoption decision. Since discrete signals are more effective than continuous
learning in changing the farmer's belief, it seems reasonable to assume that he/she would seek out these signals at the beginning of
their decision-making process.7 This implies that discrete updating affects the farmer's optimal stopping problem only insofar as it
changes his/her initial belief; discrete updating plays no role in the dynamics of the conditional mean and conditional volatility.

Let the ith signal be given by:
where
the sc
implie
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μ i ¼ μ þ εi; ð2:8Þ

εi ∼ N(0,σε
2) is independently and identically distributed. After receiving n such signals at time 0, it can be shown that the
where

conditional mean and variance of the drift are given by:
m′
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μ ¼ 1
n∑

n
i¼1μ i. Eq. (2.10) shows that the conditional variance is decreasing in the number of signals, which can be taken as

ope of social learning. Therefore, social learning reduces parameter uncertainty. Using Abasov's numerical results, this
s that social learning decreases the threshold value for adoption, making it easier for the threshold value to be breached,
g to shorter waiting time for technology adoption.
leadin

Considering the conditional mean Eq. (2.9), we find that as the number of signals increases,m′
0 tends to move away from m0

and approachu. This indicates that social learning causes the farmer's belief about the drift to converge to the average belief in the
farmer's social network. The net effect depends on the relation between m0 and u. If m0Nu, the farmer is initially too optimistic;
social learning causes him/her to lower their expectation about the project's return. This, in turn, lowers the trigger value and
facilitates adoption. If the farmer is unbiased in his/her initial belief, then social learning is unlikely to change the probability of
adoption through its effect on the conditional mean return.

If we generalize this model to allow the dynamics of social learning to enter the farmer's decision making, then we can write
down the following optimal stopping problem, where we combine continuous filtering with discrete updating:
J m0;γ0;V0ð Þ ¼ maxE
τ∈FV∨FN

e−ρτ Vτ−Ið Þ� �
;
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t

σ2 dt−
γ2
t−

γt− þ σ2
ε
dNt:

ð2:11Þ
Here, μt refers to the independently and identically distributed noisy signals described in Eq. (2.8), and Nt is a counting process
that counts the number of signals that the farmer has received up to time t.8 It can be periodic and deterministic as in Huang and
Liu (2007), or stochastic, as in the case of a Poisson process with arrival rate λ, which describes the timing of social interactions as
definition, discrete updating (2.9) causes the conditional mean to change by a finite amount, while continuous updating (2.2) yields only infinitesimal
over an instant.

ause the sample path of the jump process Nt is right continuous, we use the notation mt − and γt − to denote the left limit of the conditional mean and
e, respectively. Essentially, they denote the values of these processes just before the arrival of a discrete updating.
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a random phenomenon. In all cases, however, the first part of the dynamic equations for (mt,γt) captures the effect of continuous
updating as the farmer learns from the past history of Vt. The second part represents a jump in the conditional mean and variance
when the farmer receives a noisy signal of the drift. Because γt and Nt are deterministically related through the conditional
variance relation, we have suppressed the dependence of the value function on N0. Similarly, we can write the trigger value as
V ∗(mt,γt), with the understanding that the effect of Nt is already reflected in the conditional variance γt.

Generally, the optimal stopping problem (2.11) must be solved numerically. To the extent that social learning affects the
conditionalmean and variance of the drift, it also affects the farmer's adoption decision. According to the abovemodel, the amount of
social learning is measured by Nt. As the conditional variance equation shows, a larger Nt (more social learning) always reduces γt,
while the effect through the conditional mean equation is ambiguous (probably negligible whenm0 is close to the average signal). If
the trigger value V ∗(mt,γt) in problem (2.11) is increasing in γt (which seems to be an intuitive conjecturewithout actually solving the
problem using numerical techniques), this would imply that social learning can lower the trigger level for adoption.

Summarizing the various models, the classical real option analysis of McDonald and Siegel (1986) predicts that the trigger
value for investment increases with the uncertainty of the project value. We show that this result also extends to parameter
uncertainty. We argue that social learning can facilitate adoption by reducing the trigger value through lower parameter
uncertainty, and a lower trigger value makes adoption easier for farmers (resulting in less waiting time). In rural China, where
public extension information is not easily accessible to small farmers, information from social learning could play an important
role in their adoption decisions. The rest of our paper is dedicated to testing this hypothesis.

3. Greenhouse intermediate-technology in northern China

Before economic reforms, China gave first priority to the development of heavy industry. In agriculture, China emphasized the
importance of self-sufficiency for grains — the “iron rice bowl policy.” After the “household responsibility system” reform started
in 1981, the shortage of grain supply was relieved by a significant increase in grain production. This made it possible for China
to diversify into horticulture and livestock husbandry. Meanwhile, rapid income growth in the 1980s and 1990s created an
increasing demand for vegetables and fruits.

The huge demand for fresh vegetables led to the development and widespread diffusion of an affordable greenhouse technology
for northern Chinese farmers. Rather than the modern, expensive type made of steel frame, plastic or glass walls and ceilings, and
requiring energy-using heating and coolingmechanisms (promoted in the 1970s in China but had very little adoption because of the
cost (Wan, 2000)), the greenhouse adopted in the 1990s in northern China is of the “intermediate technology” type, which was first
created by Shandong farmers in the early 1980s. This type of greenhouse ismade of simple claywalls, a bamboo frame, a plastic-sheet
roof, and a straw mat roll-out awning for cold nights. The sun warms the interior; the greenhouse is built with an orientation to
maximize sunlight capture. These greenhouses changed not only the food consumption pattern for hundreds of millions of
consumers, but also the face of farming in northern China. They helped to transform China from amodest global player to the volume
leader in horticulture— China grew 47% of the vegetable volume in theworld by 2004 (Weinberger & Lumpkin, 2005). The vegetable
greenhouse area in China reached 723,000 ha at the end of 2006 (NBS, 2008), and the output of greenhouse vegetables reached about
$60 billion and provided about 40 million jobs in rural China in 2008 (Ma, 2009).

The intermediate-technology greenhouse is far cheaper than a modern type, but is still a major investment for the small
farmers in Shandong. The construction cost of intermediate-technology greenhouses is roughly four dollars per square meter,
much cheaper than modern greenhouses made of glass or plastic, which cost about 70 dollars per square meter to construct. Yet,
even four dollars per square meter is a large investment for small farmers. For example, if a greenhouse is 60 m long and 10 m
wide, the construction cost would be about $2400, while the average Chinese farmer earned less than $500 in 2005. Moreover, the
labor involved in building the greenhouse is substantial; the farmer often spends months creating the main component — the
rear-wall of the greenhouse, which is usually made of pounded clay bricks.

In addition, the investment is “irreversible,” in the sense of Bertola and Caballero (1994), as the structure can only be used in
immediate production, and has little to no salvage value and cannot be sold or transferred (the structure is not movable). If the
farmer decides to demolish the greenhouse, the bricks would most likely be broken into dirt clods, and the old straw awning and
old bamboo beams are worth little in salvage.

Greenhouse vegetable growing is different from open-field vegetable growing in several ways. First, greenhouse yields far exceed
open-field yields. For example, the tomato yield is about 12 tons per mu (as there are 15 mu in 1 ha, that is about 180 tons per ha)
annually in a greenhouse, compared to about 2 tons permu (30 tons/ha) in an open field. Several factors, including a longer growing
season, multiple harvests, and labor-intensive production, contribute to the higher yield. Second, the greenhouse growing season
lasts for about 9 months during the fall and the spring, while open-field growing lasts for about 3 months during the summer in
northern China. Third, greenhouse-grown vegetables are often transported to distant markets, while vegetables from the open-field
are usually used for home-consumption, with a small surplus sold in local markets. These considerations suggest that there is little
overlap or competition between greenhouse and open-field growing.

4. Sample selection and survey methods

Our survey area is in Shandong province, the leading horticulture province in China. It has seven percent of China's cropland,
but 12% of China's horticultural land in 2004. The latter share has been rising over time. The number of greenhouses and the level
of commercialization as well as yields in Shandong are higher than in the rest of China.
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In Shandong, we conducted two coordinated community and household level surveys in 2005 and 2006, respectively. The first
one, the Shandong village survey, provided a representative sample of tomato and cucumber growing villages in Shandong.9

During the first step of the survey, we created sampling frames of county-level tomato and cucumber production in order to select
five sample counties per crop. Specifically, with knowledge of county production of each crop, we ranked counties by the output
per capita of that crop. For each crop in our sample, one high production county was randomly selected from the counties in the
top quintile; the other high production county was randomly selected from the second quintile. The two medium production
counties were randomly chosen from the third and fourth quintiles, respectively. After eliminating five percent of the counties
with the lowest production, the low production county was randomly chosen from the lowest quintile. In the end, there were two
counties in the high production set, two counties in the medium production set, and one county in the low production set.

After the sample counties were chosen, a similar process was used to select sample townships from the counties and sample
villages from the townships. For each crop, the survey teams visited a total of 10 townships. Moreover, for each crop (among the
ten townships), we interviewed respondents in 35 villages (22 in high production counties, 10 in medium production counties,
and 3 in low production counties). Since we collected area data on all villages, townships, and counties in the sample, we were
able to construct area-based weights in order to create point estimates of our variables that are provincially representative.

Having selected the villages, the enumeration team visited each community and undertook data collection. Specifically, the
enumerator conducted a two-hour interview with three village leaders for the village survey. To select households from the
selected villages, we followed the following steps. Here we use cucumber villages as example. We divided all households in each
village into two groups: cucumber households and non-cucumber households. Then we applied the following rules to select
households: 1) in villages with more than (or equal to) 7 cucumber households, we randomly sampled (or selected all) 7
cucumber households and 3 non-cucumber households; 2) in villages with 5 or 6 six cucumber households, we selected all these
cucumber households and randomly sampled 3 non-cucumber farmers; and 3) in villages with less than 5 cucumber households,
we also selected all these cucumber farmers and then randomly sampled 2 non-cucumber farmers. As a result, we obtained 655
observations in our sample, and 326 households from cucumber villages, of which, 227 households grew cucumber and 99
households did not grow cucumber in 2006. Following the same approaches, we also obtained 329 households from tomato
growing villages, of which 229 households grew tomatoes and 100 household did not grow tomatoes. The total number of
households that grew either cucumbers or tomatoes in 2006 was 456 (199 households grew neither cucumbers nor tomatoes in
2006). With knowledge of the distribution of cucumber (or tomato) households and non-cucumber (non-tomato) households,
plus the distribution of greenhouse adopters in each village, we calculated weights for our selected sample in order to better
represent the population distribution.

Shandong farmers did not adopt greenhouses all at once, but rather, in a process typical of diffusion of new technology, over
the years. Some households adopted greenhouses as early as the 1980s (the earliest adoption was in 1984 in the survey), but the
recall errors in those early adoptions could deteriorate the quality of data even though farmers claim that they can remember the
details of their own adoption because adoption represented substantial investment to them. In order to minimize recall error, we
only retained in our sample data on adopters whose adoption was not earlier than 1996, and all information for non-adopters was
taken from 2001 (the middle point of 1996 and 2006, following Carletto, Kirk, & Winters, 2010) to minimize heterogeneity over
time.

After data cleaning, we obtained 485 valid observations for regressions (242 growers from tomato villages and 243 growers
from cucumber villages).10 Among this sample, 221 households (46%) were found to have adopted greenhouses, while 264
households were found to have not adopted greenhouses. 137 adopters out of the 221 households are tomato growers, and a
higher share of tomato growers adopted greenhouses apparently due to the fact that in cucumber production a shading shed is a
substitute for a greenhouse, while in tomato production there is no substitute for a greenhouse, and the only options are growing
in the open field or in a greenhouse.

4.1. Measures of and patterns in social learning among sample households

We are interested in the effect of social learning on farmers' adoption of greenhouses. Our theoretical model predicts that
social learning helps to reduce uncertainty, thus facilitating adoption and shortening waiting time. Empirically, however, social
learning could be one of many factors affecting adoption. For example, farmers may have other options such as off-farm
employment. Alternatively, farmers may be liquidity-constrained because greenhouse adoption is a major investment. To
disentangle the effect of social learning from other determinants, we need to find appropriate empirical proxies for social learning
and control for other factors that might influence farmers' decisions.

Social learning is a key variable in our study. We measure social learning in a way similar to that of Bandiera and Rasul (2006).
We asked farmers in the following way: “Of all people you know, how many households are there? And how many of those
households adopted greenhouses before you?” We then asked, “How many of these people are your relatives and friends,
9 We did not directly stratify on greenhouse use because our survey was part of a large horticulture survey, which required stratified sampling of cucumber/
tomato and non-cucumber/tomato households. Cucumber and tomato are the two most popular greenhouse crops in the sampling area, and we are able to adjust
for selection bias with knowledge of the distribution of crops and greenhouse use in each village.
10 Two reasons required our reducing the number of observations from 655 to 485 in the regressions: first, we needed to remove inconsistent records from the
original dataset (removing 34 observations). Second, as we discussed above, we only kept data on adoption that was not earlier than 1996 to minimize the recall
error (removing 136 observations). We have adjusted the data used in the regressions for the above attrition with knowledge of each removed observation and its
corresponding weight in the sample.
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respectively?” (We did not include neighbors as a separate category because Chinese farmers usually consider neighbors among
friends). We asked the non-adopters how many adopters were in their village in 2001 and 2006 (the time of the survey). The
answer to the second question is taken as our empirical proxy for social learning. Differing from Bandiera and Rasul (2006) (who
asked about the social network at the time of the survey, not before adoption), we obtained the size of the farmer's social network
of adopters before the farmer's adoption, so that we can infer causality.

There are several reasons why our measure of the social network of adopters is an appropriate measure of social learning
before adoption. First, the number of earlier adopters among relatives and friends is likely to be positively correlated with the
number of different sources of information on greenhouse adoption that the farmer accessed before adoption, which corresponds
to the number of discrete signals in our theoretical model. Second, village membership, kinship, and friends are the defining
elements of a farmer's social network, or a group of people with whom the farmer has close contact, and from whom information
can be most easily obtained. By concentrating on the number of earlier adopters among relatives and friends, we also mitigate the
concern for ex post social network formation. While this is obvious for kin adopters, we noticed during our survey that Shandong
farmers tended to define friendship based on long-term relationships, such as classmates, neighbors, and people who served with
them in the army. Typically, they consider a friend someone fromwhom they can borrowmoney in case of illness; they would not
consider passing acquaintances as friends. Third, farmers told us they were easily able to remember the number of adopters they
knew before they adopted; we surmise that this is because a greenhouse is a big investment for local farmers and hence easily
recalled.

The first two rows of Table 1 provide the means and standard errors of our social learning measures by adoption status. In the
last column, tests of equality of the means are provided to examine whether the differences between adopters and non-adopters
are significant. The first row indicates that, on average, adopters know about 8.1 earlier adopters among relatives and friends in
their own village, while non-adopters only know about 4.8 earlier adopters in their social network. The result of the t-test shows
that this difference is significant. This implies that there is more social learning for adopters than for non-adopters. When we
extend the scope of the social network to include earlier adopters among relatives and friends in nearby villages (the second
row), the findings are similar.
4.2. Other sample household characteristics

Table 1 presents other household characteristics by adoption status. There are several salient features.

(1) Non-adopters have more years of awareness of greenhouse technology than adopters, which suggests that non-adoption is
not likely caused by later awareness or unawareness of the technology.

(2) The family size of adopters is larger than that of non-adopters, while the amount of farm laborers in the family is
significantly smaller for adopters than for non-adopters. This is because adopters have more dependent family members
(either young children or old parents) than non-adopters. For such households, greenhouse adoption may be chosen
because it allows the adults to work close to home, so that they can care for dependent family members. Non-adopters are,
on average, substantially older than adopters — a point consistent with younger farmers having more young children and
old parents to care for.

(3) Off-farm income is significantly larger for non-adopters than for adopters, which suggests that greenhouse labor and
off-farm employment are substitutes.
Table 1
Descriptive statistics: household level data.
The sample period in this study ranges from 1996 through 2006, and this table contains the basic household characteristics used in our study. The mean value for
each variable is presented with the associated standard error in parentheses. For adopters, all variables are measured in the year before adoption.
For non-adopters, all variables are measured in 2001 (the middle point between 1996 and 2006). *** denotes significance at one-percent, ** five-percent, and
* ten-percent levels. Data used in this table is from the field survey described in Section 4.

Basic characteristics Non-adopter Adopter Test of equality of the
means (p-value)

Social learning within village 4.760 (0.709) 8.079 (0.956) 0.004***
Social learning within village and nearby villages 5.815 (0.797) 9.898 (1.096) 0.002**
Years of awareness of the technology 7.894 (0.435) 5.287 (0.308) 0.00***
Family size (person) 3.763 (0.071) 3.942 (0.075) 0.086*
Family labor (person) 2.931 (0.069) 2.562 (0.056) 0.001***
Age of family head (year) 42.58 (0.611) 37.06 (0.582) 0.00***
Total schooling years 12.83 (4.794) 12.54 (5.334) 0.528
Off-farm income (10,000 yuan) 1.215 (0.143) 0.657 (0.080) 0.01***
Farm size (mu) 5.321 (0.171) 6.710 (0.228) 0.01***
Irrigation ratio 0.804 (0.019) 0.912 (0.015) 0.01***
Ratio of construction costs 3.239 (0.222) 1.766 (0.137) 0.00***
Number of major land reallocations 1.381 (0.069) 0.964 (0.068) 0.00***
Distance to neighborhood (minutes) 15.36 (0.641) 16.62 (0.913) 0.246
Surname ranking 1.858 (0.072) 1.862 (0.081) 0.969
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(4) There is no significant difference in education (total schooling years) between adopter and non-adopter households in our
sample. This suggests that education might not be the main determinant of greenhouse adoption and that other sources of
information, such as social learning, play a role.

(5) The farm size of adopters is larger than that of non-adopters, which may be because adoption requires wealth correlated
with land, or that farmers with more land tend to focus on farming for income (rather than off-farm work), and thence to
favor investments to raise productivity of farming.

(6) Irrigation is (for physical reasons) important to greenhouse farming, and 91% of the adopters have irrigation. By contrast,
80% of the non-adopters have irrigation.

(7) Adopters have greater land tenure security (have experienced fewer land reallocations) than non-adopters. This appears to
correlate with the long-term nature of greenhouse investment.

(8) The presence of a credit constraint would in theory undermine an important investment such as greenhouses, all else
equal. However, it is difficult to measure the credit constraint of a farmer, as this is equivalent to examining whether the
farmer can borrow as much as he/she would like at the going market interest rate (Banerjee & Duflo, 2002). Since we are
focusing on greenhouse adoption rather than testing whether the farmer has invested in a greenhouse of optimal scale, we
only need to know whether the farmer is capable of building a greenhouse by borrowing money or using savings.
Therefore, we identify the housing construction cost prior to greenhouse adoption as a proxy for the financial capacity of a
household. We also collect the greenhouse construction cost for each household, and use the ratio of the two construction
costs as an indicator of potential credit constraints.11 The data for this ratio indicate that the housing construction cost is
greater than the greenhouse construction cost for both adopters and non-adopters. More importantly, the ratio for
non-adopters is 3.2, which is significantly greater than the ratio for adopters, which is 1.8. This suggests that non-adopters
are less likely to face credit constraints than adopters.

(9) Although adopters tend to experience more social learning, this is not because they have larger social networks. Since it is
not easy to ask farmers to identify their total number of friends, we use the surname quartile ranking in the village as a
proxy of the farmer's social network since lineage is still very important in rural China.12 This variable takes the value of 1
to 4, with 1 indicating that the farmer's surname is among the largest surname lineages in the village. The data indicates
that, on average, non-adopters have no difference in surname ranking than adopters, which implies that adopters do not
have larger general social networks than non-adopters.

(10) Adopters live further away from the road compared to non-adopters, which suggests that people adopt greenhouse
technology not because of lower product delivery costs from living closer to the road. Instead, living closer to the road
might be correlated with more off-farm job opportunities, which could discourage greenhouse adoption.

(11) We also collect information about greenhouse subsidies from the government by asking farmers the following question:
“How much subsidy did you receive from the village or town government when you built your greenhouse?” The results
from the survey show that only 30 out 501 households received a subsidy and the amount ranged from 80 yuan to 1000
yuan (about 10 to 125 US dollars), which is a small fraction of a greenhouse's construction cost; this suggests that
greenhouse subsidy played little role in adoption.13

5. Empirical approach

In this section, we present the empirical approach and show its connection to our theoretical model.

5.1. Linear probability model

According to our real option model of greenhouse adoption, the farmer decides to adopt or to wait based on a comparison
between the current value of the technology and the trigger value. Therefore, we can define the farmer's adoption status (Yt) at
time t as:
11 For
12 In r
lineage
13 Sinc
variable
Yt ¼ 1 adoptð Þ; if Y�
t ¼ Vt � V�

t N0;
Yt ¼ 0 non‐adoptð Þ; if Y�

t ¼ Vt � V�
t ≤0;

ð5:1Þ

Vt is the discounted expected value of all future cash flow from greenhouse vegetable production, and Vt
∗ is the trigger
where

value.
McDonald and Siegel's (1986) model, in which the drift μ is known, shows the trigger value V ∗ as a function of the parameters

(ρ,μ,I,σ). However, the drift μ is unknown in our model. Thus, the trigger value also depends on the conditional mean and variance
non-adopters, we use the average construction cost of greenhouse in the village as the proxy for the construction cost.
ural China, the same surname is important to the social network in the village; for example, the leader of the village is often from the largest surname
in the village (Shen & Yao, 2006).
e a greenhouse subsidy is available only if the farmer builds the greenhouse, non-adopters are not able to obtain the subsidy and we do not include this
in Table 1.
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of the drift, (mt,γt). According to the dynamics of (mt,γt) in Eq. (2.11), we can substitute (mt,γt) with functions of
m0;γ0; Z

′
t ;Nt ;σ ;σε ; μ

� �
.14 Therefore, we can express the trigger value Vt

∗ as:
14 This
history
15 In th
cases. F
for an a
include
16 The
China a
17 The
focus on
similar
V�
t ¼ g ρ; I;σ ;m0;γ0; Z

′
t ;Nt ;σε ; μ

� �
: ð5:2Þ
Following similar reasoning, the current project value Vt can be written as a function of the same group of variables. Therefore,
we can express Yt

∗ = Vt − Vt
∗ as:
Y�
t ¼ h ρ; I;σ ;m0;γ0; Z

′
t ;Nt ;σε ; μ

� �
: ð5:3Þ
To motivate the empirical proxies for the variables in Eq. (5.3), we first note that Z′
t represents the stochastic change in the

project value. A good proxy for Z′
t is the observed profitability of greenhouse production in the current period. We measure

profitability by the ratio of the output price to the input price.15 Because historical data are not available on vegetable prices in
Shandong, we use the ratio of the vegetable price index and the input price index at the national level as a proxy for the
profitability of greenhouse production over the years.16 The investment cost I is embedded in the ratio of the housing construction
cost and greenhouse construction cost.

Continuing with the interpretation of Eq. (5.3), σ is the volatility of the project value, which we measure as the standard
deviation of the national vegetable price index over the three years prior to the farmer's adoption. μ represents the average signal
received by the farmer from the farmer's social network, the proxy for which is the vegetable price index growth rate over the
three years preceding the farmer's adoption. This is a reasonable assumption if the expected return of the project is close to the
average return in the economy. As noted above, Nt is the key variable in our study. We measure it by the number of earlier
adopters in a farmer's social network, which includes relatives and friends in the farmer's own village and nearby villages.

Besides these theoretically motivated variables, there may be other factors that affect greenhouse adoption in practice, such as
land tenure security, off-farm income, and household characteristics. These factors were discussed in the preceding section. In
addition, we do not have compelling empirical proxies for the farmer's discount factor ρ, their initial values of the conditional
mean and variance (m0,γ0) before any learning had taken place, and the standard deviation of their signals σε. These parameters,
however, are likely correlated with household characteristics such as age, family size, and education, which we include in our
empirical analysis to capture potentially omitted factors.

Our theoretical model is based on observables; with knowledge of these observables, the model predicts adoption with
certainty. In reality, however, we do not observe all information relevant for determining adoption. Therefore, our empirical
model must allow for the presence of unobserved determinants.

In brief, our empirical model can be written as:
Y�
i ¼ f Xi; Zi;Ni;Dð Þ þ ei; ð5:4Þ

i denotes a household, Yi
∗ is the adoption criterion in year t according to Eq. (5.1), and Xi are household characteristics
where

before adoption (in year t − 1), which include the age, total schooling years of the household, family size, farm size, off-farm
income, irrigation conditions, ratio of housing to greenhouse construction costs, greenhouse subsidy, input price (urea), distance
to road and surname ranking (by number of persons in the village with the given surname as a proxy for the overall social
network). Zi is the institutional and market variables at t − 1, which include the number of major land reallocations experienced
by the household, the ratio of the output price index to the input price index, the volatility of the vegetable price index, and the
average growth rate of the vegetable price index. Ni is the number of earlier adopters in the farmer's social network at t − 1. D
represents village and crop dummies that control for heterogeneity in farmers' adoption decisions across different villages and
crops. Finally, ei represents the effect of unobservable determinants of adoption. The probability of adoption is:
P Y�
i N0

� 	 ¼ P eiN− f Xi; Zi;Ni;Dð Þð Þ: ð5:5Þ
In our empirical analysis, we estimate a linear probability model (LPM), which specifies the above probability as a linear
function of the explanatory variables. The LPM enables us to use village dummies to control for heterogeneities across villages,
which is important given the structure of our dataset (which pools households from different villages).17
is only a simplified representation; strictly speaking, the solution of (mt,γt) according to Eq. (2.11) depends on the paths of Z′
t and Nt, as well as the

of the signals up to time t.
is paper we focus on the greenhouse adoption decision, which is essentially the comparison between adopters and non-adopters within a village in most

or non-adopters, the natural benchmarks for them are the average yield and input level from adopters in the same village. In this sense, what really matter
doption decision are the output and input prices over time, which can be well captured by the ratio of output price to input price. In addition, we have
d village dummies and crop dummies in the empirical models to control for heterogeneities in the yield and input level across villages and crops.
national price index is likely in line with the Shandong price index since Shandong province has been a major greenhouse vegetable production area in
nd the Shouguang wholesale market (Shandong) is the largest greenhouse vegetable wholesale market in China.
LPMmodel is more robust than Probit and Logit models at the cost of yielding less efficient estimates. Since our first priority is to maintain robustness, we
results from the LPM model. For robustness check, we also provide the results estimated from Probit and Logit models (see Table 6). These results are

to those from the LPM model.
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5.2. Duration analysis

From the theoretical framework presented above, we can see that social learning facilitates adoption through reducing the
trigger value. On one hand, we can test whether social learning facilitates final adoption through the linear probability model. On
the other hand, a lower trigger value also corresponds to a shorter waiting time, and the waiting time is defined as the number of
years between the year when a farmer first observes someone adopting the greenhouse technology in his/her village and the year
of his/her own greenhouse adoption. In order to test the relation between social learning and waiting time, we employ a duration
analysis to model the dynamic nature of the adoption process with time-varying covariates.

Unlike most duration analyses which focus on hazard functions (for example, Carletto et al. (2010)), in this paper we are
primarily interested in the effect of the covariates on the expected duration. Consequently, we can apply a censored Tobit analysis
to the log of the duration (page 698, Wooldridge (2002)). More importantly, the censored Tobit analysis enables us to deal with
endogeneity issues which are difficult to handle in a duration analysis focusing on hazard functions. In other words, we apply a
two-step procedure (procedure 16.1 on page 531, Wooldridge, 2002), which is a standard way to deal with endogenous
explanatory variables in censored Tobit models such that the effects of the covariates on the expected duration are estimated
correctly.

The Tobit model assumes that, for each random draw i, the log duration log(Ti⁎) given the covariates Xi follows a normal
distribution N(Xiδ, σ2), which implies that Ti⁎ given Xi has a log-normal distribution, with δ representing the vector of coefficients
to be estimated, and σ2 denoting the variance of the log duration. The hazard function for a log-normally distributed duration,
conditional on the covariates, can be written as:
λ T�
i ;Xi

� 	 ¼ h logT�
i −Xiδ

� 	
=σ

� �
=σ ; ð5:6Þ

h(z) ≡ ϕ(z)/[1 − Φ(z)], ϕ(z) is the standard normal density, and Φ(z) is the standard normal CDF. The lognormal hazard
where
function is not monotonic and does not have the proportional hazard form. Nevertheless, the estimates of δ are easy to interpret
because the model is equivalent to:
log T�
i

� 	 ¼ Xiδþ ei: ð5:7Þ
Therefore, δ also represents the semi-elasticities of the expected duration with respect to the covariates.
Suppose we now have one of the variables in the above Tobit model assumed to be endogenous. The model can then be

rewritten as follows:
y ¼ max 0; log T�
i

� 	� �
;

log T�
i

� 	 ¼ X1δ1 þ α1y2 þ u1;
y2 ¼ Xδ2 þ v2 ¼ X1δ21 þ X2δ22 þ v2;

ð5:8Þ

(u1,v2) are normally distributed with zero mean and independent of X. If u1 and v2 are correlated, then y2 is endogenous.
where
The estimation of the above model with an endogenous y2 can be done correctly using a standard two-step procedure proposed in
Wooldridge (2002) (page 531): First, estimate the reduced form of y2 by OLS, which gives δ̂2 . Define the reduced form OLS
residual as v̂2 ¼ y2−Xδ̂2:Second, estimate a standard Tobit of log(Ti⁎) on X1, y2 and v̂2. This second step gives consistent estimators
of δ1 and α1, which identifies the effect of the covariates on the expected duration.

5.3. Identification strategy

There are several potential issues concerning identification that we address as follows.

5.3.1. Direct support versus social learning
There is a potential concern as to whether the social network also has a direct effect on greenhouse adoption through input

provision and output marketing services. Fortunately, the social network variable in our empirical study, the number of earlier
adopters among relatives and friends, has largely excluded its direct effect of greenhouse adoption because there was no
cooperative activity in input purchasing or output marketing among relatives and friends in our study area during the period
covered by our survey. To see whether this observation is also reflected in our data, we compare prices of urea, one of the major
fertilizers used by farmers and a homogenous product in terms of nutrients and quality, between non-adopters and adopters of
greenhouses. The results show that there is no statistically significant difference in urea prices paid by adopters and non-adopters
(Table 2, panel C). Moreover, we also include the fertilizer price into the regressions to further control for direct effects from the
social network.

5.3.2. Endogeneity issue and its solution
There is a potential endogeneity issue concerning the social learning effect. The issue of endogeneity may arise for reasons

discussed in Manski (1993). The latter uses the reflection problem to describe the tendency for people in the same social network
to behave in similar ways. He identifies two possibilities: (1) an endogenous effect, wherein the propensity of an individual to



Table 2
Relation between distance to neighborhood and household characteristics.

Panel A: correlations

Family size
(person)

Surname ranking Age of family head
(year)

Total schooling years
(year)

Off-farm income
(10,000 yuan)

Distance to neighborhood
(minute)

0.149 0.042 0.022 −0.048 0.009

Farm size (mu) Ratio of construction costs Distance to road (km) Distance to market (km) House value
(10,000 yuan)

Distance to neighborhood
(minute)

0.042 −0.048 −0.029 −0.040 0.060

Panel B: average household characteristics by distance to neighborhood

Distance to neighborhood Family size (person) Surname ranking Age of family head (year) Total schooling years Off-farm income
(10,000 yuan)

Below median 3.699 1.736 39.82 7.275 8.51
Above median 4.004 1.995 40.37 6.781 10.87

Distance to neighborhood Farm size (mu) Ratio of construction costs Distance to road (km) Distance to market (km) House value
(10,000 yuan)

Below median 5.938 2.634 1.144 5.796 5.988
Above median 5.971 2.503 1.153 3.882 7.321

Panel C: fertilizer (urea) price (yuan/kg) across counties

County Non-adopter Adopter Test of equality of the means (p-value)

1 2.074 (0.094) 2.261 (0.141) 0.468
2 2.365 (0.148) 2.276 (0.085) 0.582
3 2.274 (0.195) 2.288 (0.108) 0.955
4 2.158 (0.061) 2.421 (0.251) 0.146
5 2.429 (0.077) 2.618 (0.392) 0.392
6 2.236 (0.123) 2.696 (0.306) 0.490
7 2.249 (0.054) 2.200 (0.043) 0.481
8 2.018 (0.085) 2.168 (0.069) 0.309
9 2.415 (0.229) 2.014 (0.146) 0.701
10 2.584 (0.344) 2.374 (0.096) 0.622
Average 2.248 (0.052) 2.338 (0.057) 0.247

Panel D: Greenhouse construction cost (Yuan) across counties

County Observations Mean Std. Dev.

1 59 9546 5323
2 25 8925 1637
3 37 9553 4581
4 85 7311 2363
5 28 10,993 4000
6 52 11,877 7844
7 82 7995 2231
8 50 10,847 6074
9 24 8626 5376
10 43 11,647 8937
Total 485 9462 5250

Note: Data used in this table is from the field survey described in Section 4.
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behave in certain ways varies with the prevalence of the behavior in the group and (2) a correlated effect, wherein a common
environment and personal characteristics produce similar behavior.

Here, we focus on testing the hypothesis that farmers' adoption decisions are influenced by social learning. Therefore, we need
to empirically distinguish the social learning effect from the endogenous effect and the correlated effect.

In our context, the endogenous effect is essentially the social pressure problem. Psychologists often use the idea of social pressure
as a way of explaining “herd behavior.” In Shandong, most farmers are free to make production plans for their own farms after the
economic reforms several decades ago. Commonly, farmers in a village have multiple ways of making a living (e.g., farming, off-farm
jobs in cities, and small businesses in the village). It seems unlikely that farmers would adopt greenhouse vegetable growing because
of social pressure.

In our context, the correlated effect poses a more serious challenge. An endogeneity problem could arise from the simultaneous
determination of adoption and network formation: for example, a farmer could know more adopters because he/she built a



Table 3
Greenhouse adoption and social learning: 2SLS versus OLS.
Dependent variable: 1 = adopt, 0 = not adopt.

Explanatory variables Coefficient (std error) Coefficient (std error) Coefficient (std error) Coefficient (std error)

2SLS OLS 2SLS OLS

Social learning within village 0.032** 0.010***
(0.014) (0.002)

Social learning within village and nearby villages 0.027** 0.010***
(0.010) (0.002)

Market volatility −0.004*** −0.004*** −0.004*** −0.004***
(0.001) (0.001) (0.001) (0.001)

Conditional mean of market return −1.241 −1.187 −1.522* −1.289
(0.687) (0.775) (0.855) (0.798)

Output price/input price 0.649 1.797** 1.203 1.932**
(1.381) (0.860) (1.381) (0.850)

Family size (person) 0.007 0.022 0.011 0.022
(0.025) (0.022) (0.023) (0.022)

Surname ranking −0.076** −0.041** −0.066** −0.040**
(0.029) (0.014) (0.023) (0.014)

Age of family head (year) −0.009*** −0.008*** −0.009*** −0.008***
(0.003) (0.002) (0.003) (0.002)

Total schooling years (year) −0.011* −0.010** −0.012** −0.011**
(0.006) (0.004) (0.005) (0.004)

Off-farm income (10,000 yuan) −0.006 0.003 −0.003 0.004
(0.019) (0.014) (0.017) (0.014)

Farm size (mu) 0.008 0.001 0.010 0.001
(0.013) (0.011) (0.012) (0.011)

Irrigation ratio −0.086 0.022 −0.024 0.038
(0.204) (0.088) (0.152) (0.090)

Ratio of construction costs −0.013 −0.020** −0.017 −0.021**
(0.011) (0.007) (0.010) (0.007)

Times of major reallocations −0.587*** −0.450*** −0.645*** −0.477***
(0.186) (0.130) (0.171) (0.132)

Years of awareness of the technology (year) −0.036*** −0.026*** −0.036*** −0.027***
(0.009) (0.005) (0.008) (0.005)

Greenhouse subsidy (yuan) 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Fertilizer price (yuan/kg) −0.026 0.009 −0.014 0.011
(0.053) (0.019) (0.041) (0.018)

Distance to road (km) 0.096 0.143** 0.115* 0.148**
(0.063) (0.053) (0.060) (0.054)

Dummies and constant terms
Crop dummy 0.634 0.134 0.473 0.157

(0.627) (0.226) (0.519) (0.222)
Village dummies Yes Yes Yes Yes
Constant terms 1.882 0.540 1.361 0.426

(1.688) (0.992) (1.414) (0.972)
Observations 485 485 485 485
Adjusted R-squared 0.621 0.819 0.685 0.815
Durbin–Wu–Hausman test for endogeneity p-Value 0.044 p-Value 0.053

*** denotes significance at 1%, ** 5% and * 10%. Data used in this table is from the field survey described in Section 4.
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greenhouse. In other words, the adoption could affect social learning instead of social learning affecting adoption (endogeneity from
simultaneous determination). To mitigate this problem, we collected household and institutional information for the year before the
adoption of the greenhouse (in the case of adopters). For non-adopters, we collected the information in 2001 (the middle point
between 1996 and 2006) (after Carletto et al., 2010).

Moreover, farmers who are entrepreneurial are likely to knowmore people (hence more adopters). At the same time, they are
more likely to try out new things (thus more or less likely to adopt greenhouse, depending on the availability of other options).
Therefore, a farmer's adoption could be explained by the farmer's personality, rather than by learning from others in the farmer's
social network. Thus, a key problem is how to identify social learning from unobservable error terms such as similar personalities
in the social network. We need to find at least one instrumental variable which is (1) correlated with social learning after we
control for other factors, but that is (2) not correlated with the error terms. While we can test the first condition, we cannot test
the second condition directly because the error terms are not observable.

Fortunately, we have an appropriate instrument: the walking time from the farm to a farmer's neighborhood. More
specifically, we ask farmers the following question in the field survey: “Howmany minutes does it take to walk by your 20 closest
neighbors?” The logic of this question is that social learning could be negatively correlated to the walking time. For example, if a
farmer lives in a mountainous area, it could take two hours or even more to walk by the farmer's 20 closest neighbors. On the



Table 4
Greenhouse adoption and social learning: first stage 2SLS results.
Dependent variable: social learning.

Social learning within village Social learning within village and nearby villages

Explanatory variables Coefficient (robust std error) Coefficient (robust std error)

Distance to neighborhood (minute) −0.078** (0.037) −0.093** (0.039)
Market volatility 0.011 (0.022) 0.004 (0.024)
Conditional mean of market return 6.212 (28.49) 17.64 (27.54)
Output price/input price 46.79 (46.35) 35.50 (44.06)
Family size (person) 0.930 (0.858) 0.971 (0.842)
Surname ranking 1.722* (0.966) 1.711* (0.966)
Age of family head (year) 0.032 (0.092) 0.026 (0.094)
Total schooling years (year) 0.016 (0.201) 0.065 (0.204)
Off-farm income (10,000 yuan) 0.393 (0.607) 0.347 (0.615)
Farm size (mu) −0.371 (0.401) −0.490 (0.397)
Irrigation ratio 5.618 (8.536) 4.445 (7.912)
Ratio of construction costs −0.342 (0.383) −0.293 (0.388)
Times of major reallocations 6.118 (6.683) 9.384 (6.388)
Years of awareness of the technology 0.453** (0.233) 0.550** (0.234)
Greenhouse subsidy (yuan) −0.014 (0.017) −0.009 (0.017)
Fertilizer price (yuan/kg) 1.524 (1.887) 1.390 (1.852)
Distance to road (km) 2.066 (1.751) 1.764 (1.778)

Dummies and constant terms
Crop dummy −10.45 (25.47) −13.44 (25.70)
Village dummies Yes Yes
Constant terms −55.09 (58.23) −46.55 (55.47)
Observations 485 485
Adjusted R-squared 0.501 0.528

*** denotes significance at 1%, ** 5% and * 10%. Data used in this table is from the field survey described in Section 4.
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contrary, it only takes 10 minutes for farmers to walk by the farmer's 20 closest neighbors if people live close together. We
surmise that farmers in the second case are more likely to have access to social learning. We test this hypothesis with data after
controlling for other factors: we find that walking time is significantly negatively correlated with social learning (first row of
Table 4 for both social learning measures). This result demonstrates that the walking time variable satisfies the first condition for
a valid instrument.

For an analysis of whether this instrument meets the second condition (lack of correlation with the error term in the adoption
equation), the following discussions provide further justification for the validity of the instrument.

First, we use a heuristic explanation to justify the instrument. In rural China, it is not unusual for a family to live in the same
place for decades. A well-functioning real estate market does not exist in rural China for several reasons: (1) a farmer could own a
house, but not the land on which the house is built because all land is owned by the village collective; (2) it is illegal to buy a
house in a village if the buyer is not a member of the village; (3) it is also illegal for a household to buy an additional house from
another villager because Chinese law forbids any household to occupy two pieces of land for housing in a village; and (4) if a
farmer wants to change the house location, either he has to obtain a new piece of land from the village collective under very strict
conditions due to land scarcity in Shandong, or he can find another household in the village that is willing to give up its housing
land, which is very rare. In addition, in both cases the farmer has to give up the old housing land. Based on these observations, it
appears very difficult, if not impossible, for a household to change its location. In other words, the farmer's housing location in
rural China can be considered as fixed in most cases.

Even though the location of a household appears to be fixed, historically, peoplewho live far away from their neighborhoodmight
also live far away from roads or markets. This suggests that they might have fewer opportunities to learn from markets or from the
outside world— an important consideration when analyzing the technology adoption decision. To address this potential concern, we
present the correlations between distance to neighborhood and various household characteristics such as distance to roads, distance
to markets, education, age, family size, and household wealth proxied by house value. Panel A of Table 2 shows that there is little
correlation between distance to neighborhood and the included household characteristics. In panel B, we group the sample
households according to whether their distance to the neighborhood is above or below the sample median, and then present the
average household characteristics for each group. The results suggest that peoplewho live further away from their neighborhood tend
to be richer, and that they are in fact closer to markets. The associated correlations, however, are quite small (see panel A).

As a result of these discussions, we are reasonably confident that the instrumental variable (distance to neighborhood) is
exogenous to greenhouse adoption, and therefore it allows us to obtain consistent estimators given that social learning is shown
to be endogenous by the Durbin–Wu–Hausman Test (the last row in Table 3).18
18 We also use the Hansen–J over-identification test to examine the validity of the IV. The C-statistics (p-values are 0.25 and 0.28 respectively) indicate that the
IV passes the validity test in both social learning measurements. However, we must be cautious by not over-emphasizing this result, as the power of the test
depends on the exogeneity of the other instruments (distance to village center) included in the test.
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6. Empirical results

In this section we first present the results of the estimation of the linear probability model, and then of the duration analysis.
6.1. Results of estimation of the linear probability model

Table 3 presents the estimation results for the linear probability model estimated by both 2SLS and OLS with cluster-robust
standard errors using distance-to-neighborhood as the instrument in the 2SLS. The first two columns report the results using a
measure of social learning within the farmer's own village; the next two columns report the results using a measure of social
learning that also includes the farmer's nearby villages. Generally speaking, the two sets of results are very similar, suggesting that
village boundaries are not crucial to how social learning affects greenhouse adoption.

We will focus on the first two columns for a detailed discussion of our results. The first row confirms the key hypothesis of our
study: social learning has a significantly positive impact on greenhouse adoption. Specifically, one more adopter in a farmer's
social network increases the probability of the farmer's adoption by about 3.2% after controlling for other factors. In other words,
if there are currently 10 earlier adopters in the farmer's social network, the farmer's adoption probability in the next year will
increase by about 32%. Given that the greenhouse adoption rate is still low in rural China, this amount of increased probability is
economically significant.

The third row shows how adoption is affected by the volatility of the project value, and we use the market volatility of
vegetable prices before adoption to represent the uncertainty in the stochastic project value in our theoretical model. The result
indicates that this source of uncertainty discourages adoption. This finding is consistent with theory, which predicts that the
option value of waiting to invest is larger when the future investment value is more uncertain.

The fourth row shows how adoption is affected by the return to greenhouse use. From our theoretical model, we know that the
farmer's belief about the mean return will converge to the average belief of the farmer's social network as a result of social
learning. Because we cannot observe farmers' expectations, we use the vegetable price index (national level) growth rate before
adoption to approximate the average belief of project return in the social network. The coefficient is not significant; however, the
sign is consistent with the prediction of our theoretical model, namely, higher expected returns result in a higher trigger value for
investment and a lower probability for adoption. It is also possible that the price index growth rate is acting as a proxy for farmers'
outside opportunities; however, we have already included off-farm income in our regression specification.

Our proxy for the current profitability of the greenhouse technology is the ratio of the output price index to the input price
index at the provincial level. However, the coefficients are not statistically significant, but the signs are consistent with what the
theory predicts.

Among the included household characteristics, the age of the family head and the number of occurrences of major land
reallocations are statistically significant, and the results make sense. The older the family head is, the less likely that the person
would adopt the technology since greenhouse farming is labor-intensive. More major land reallocations discourage greenhouse
adoption because the latter is a long-term irreversible investment facilitated by secure land property rights. The years of
awareness of the technology has a negative impact on adoption, suggesting that the likelihood of adoption is smaller conditional
on “holding out” for a longer period in the past.

We also include the surname ranking in our empirical model to control for the size of a household's social network. This allows
us to rule out the possibility that the adoption decision is driven by the size of the social network, and not by our social learning
measure. The result indicates that the size of the social network is negatively related to adoption after we control for social
learning, which suggests that a larger social network in the absence of social learning actually discourages adoption. It also helps
verify that it is social learning, instead of direct support due to a larger social network, that encourages adoption.19

More education, as proxied by a greater number of schooling years in a household, provides family members with more
opportunities to run small businesses and take off-farm jobs, and thus discourages greenhouse adoption. The coefficients of
off-farm income and the ratio of housing construction cost to greenhouse construction cost are not significant, but the signs are
consistent with the descriptive statistics from Table 1.

For comparison, we also present OLS estimation results of the empirical model in Table 3. We find that the social learning
effect is still statistically significant. However, the effect is much smaller compared to 2SLS estimation, which suggests that social
learning could be negatively correlated with omitted factors in the regression error term. To understand this finding, we note that
people who are entrepreneurial in spirit are more likely to have larger social networks and knowmore prior adopters. At the same
time, farmers with an entrepreneurial spirit will consider other possibilities such as starting a small business in the village or
migrating to urban areas, which might make it less likely for them to adopt the greenhouse technology. Our finding suggests that
we would underestimate the effect of social learning on greenhouse adoption if we fail to control for this endogeneity problem.

A further issue to be noted is that the IV approach may only capture the local average treatment effect (LATE), and LATE is the
mean effect on greenhouse adoption for those individuals who benefit from more social learning because the distance to their
neighborhood is closer than others. In other words, the estimation results from the IV approach might only reflect the treatment
on the compliers: the gains from social learning in rural China likely vary as the distance to their neighborhood changes.
19 Surname rank one corresponds to the largest surname lineage in the village, and rank two means the second largest surname lineage in the village, and so on.



Table 5
Duration analysis: censored Tobit model (two steps).

First step: dependent variable Second step: dependent variable

Social learning
within village

Social learning within village
and nearby villages

Logarithm of
waiting time

Logarithm of
waiting time

Explanatory variables Coefficient (std error) Coefficient (std error) Coefficient (std error) Coefficient (std error)

Social learning within village −0.027* (0.014)
Social learning within village and nearby villages −0.023* (0.012)
Market volatility 0.046 (0.029) 0.039 (0.030) 0.003*** (0.001) 0.003*** (0.001)
Conditional mean of market return −8.256 (29.72) 7.376 (29.58) −1.195 (0.854) −0.803 (0.832)
Output price/input price 44.55 (46.70) 29.60 (46.59) 0.222 (1.119) 0.277 (0.962)
Family size (person) −0.205 (1.233) −0.226 (1.124) 0.031 (0.029) 0.031 (0.029)
Surname ranking 2.857* (1.523) 2.789* (1.501) 0.011 (0.039) 0.011 (0.035)
Age of family head (year) −0.101 (0.138) −0.124 (0.137) −0.001 (0.003) −0.001 (0.003)
Total schooling years (year) −0.186 (0.338) −0.098 (0.332) −0.008 (0.008) −0.005 (0.007)
Off-farm income (10,000 yuan) −0.409 (0.793) −0.570 (0.798) −0.006 (0.023) −0.009 (0.023)
Farm size (mu) 0.199 (0.635) 0.060 (0.630) −0.038*** (0.012) −0.042*** (0.012)
Irrigation ratio 9.626 (11.14) 8.291 (10.39) 0.188 (0.163) 0.124 (0.141)
Ratio of construction costs 0.111 (0.510) 0.134 (0.525) −0.011 (0.010) −0.011 (0.010)
Times of major reallocations 8.163 (7.990) 13.50* (7.59) 0.747*** (0.166) 0.844*** (0.206)
Greenhouse subsidy (yuan) −0.139** (0.044) −0.128** (0.041) −0.003 (0.002) −0.002 (0.002)
Fertilizer price (yuan/kg) 2.604 (3.459) 2.291 (3.404) 0.040 (0.056) 0.024 (0.050)
Distance to road (km) 1.470 (1.835) 0.898 (1.805) −0.054 (0.068) −0.072 (0.065)
Distance to neighborhood (minute) −0.134** (0.062) −0.154** (0.063)

Dummies
Crop dummy −24.21 (16.96) −22.61 (17.29) −0.919 (1.500) −1.002 (1.502)
Residuals from the first step 0.028** (0.014) 0.026** (0.012)
Village dummies Yes Yes Yes Yes
Constant terms −49.96 (58.43) −38.72 (57.11) 1.562 (1.592) 1.994 (1.480)
Observationsa 301 301 301 301
(Pseudo) R2 0.555 0.570 0.343 0.345

*** denotes significance at 1%, ** 5% and * 10%. Data used in this table is from the field survey described in Section 4.
a The number of observation decreases from 485 to 301 because the waiting time for some people is zero (either because there is no earlier adopter in their

social network (for non-adopters) or they are the first group of adopters (for adopters)), which is not valid for taking logarithm.
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The difference between OLS and IV may also be related to this fact. Generally speaking, LATE represents a conditional mean
effect of both covariates and treatment while OLS only measures a conditional mean effect of covariates. More importantly, the IV
approach might only capture the effect of treatment on a subset of the population (compliers), which is now well known as an
important reason why IV estimates tend to be larger than OLS estimates (Wooldridge, 2002). In other words, that the result from
the IV approach is larger than OLS might merely reflect the difference between the compliers (those who live closer to their
neighborhood and therefore receive more social learning) and the whole population.

A comparison between the two estimation approaches also shows that the ratio of housing and greenhouse construction costs
with insignificant coefficients from the 2SLS regression becomes significant in the OLS regression. This is likely due to the
potential correlation between this variable and the social learning variable, which is effectively removed by using the
distance-to-neighborhood instrument in the 2SLS regression (see Table 2, panel B for the low correlation between the IV and the
ratio).

Since the LPM model could predict probability outside the [0,1] interval, we also present the results from Probit and Logit
models in Table 6. The results from the Probit/Logit models are quite similar to LPM. The impact of social learning on adoption is
still significant in both social learning definitions no matter we use Probit or Logit model. The sizes of social learning impact are
close to what we got from 2SLS estimation, which suggests results from 2SLS are more robust. The results for other explanatory
variables are also robust in both Probit and Logit model, in some cases, the results of the Probit/Logit model are more significant
statistically presumably due to efficiency gains from the MLE.
6.2. Results of the duration analysis

Table 5 presents the estimation results for the censored Tobit model based on the two-step procedure. As theory predicts,
social learning reduces the waiting time significantly in both social learning measurements. Since the estimated coefficients are
semi-elasticities of the covariates on the expected duration, the result from Table 5 suggests that with one more adopter in the
farmer's network, the waiting time of the farmer decreases by about 2–3% (Table 5, column 4 and 5, row 1 and 2). Meanwhile,
market volatility increases the waiting time due to the higher trigger value, which is also consistent with both theory and the
empirical results in the linear probability model.

As we discussed in the previous section, insecure land property rights discourage adoption and should increase the waiting
time. The results in Table 5 confirm those findings. Farm size reduces the waiting time and facilitates adoption, because it is easier



Table 6
Greenhouse adoption and social learning: Probit and Logit models.
Dependent variable: 1 = adopt, 0 = not adopt.

Explanatory variables Coefficient (std error) Coefficient (std error) Coefficient (std error) Coefficient (std error)

Probit Logit Probit Logit

Social learning within village 0.030** (0.011) 0.051*** (0.019)
Social learning within village and nearby villages 0.030** (0.011) 0.050*** (0.018)
Market volatility −0.021*** (0.003) −0.041*** (0.008) −0.022*** (0.003) −0.042*** (0.008)
Conditional mean of market return 0.259 (3.122) −1.613 (6.081) 0.336 (3.090) −1.728 (6.001)
Output price/input price 0.232 (3.344) 3.378 (6.788) 0.322 (3.310) 3.595 (6.723)
Family size (person) 0.097 (0.105) 0.185 (0.211) 0.101 (0.107) 0.184 (0.214)
Surname ranking −0.124 (0.125) −0.252 (0.242) −0.123 (0.125) −0.250 (0.238)
Age of family head (year) −0.054*** (0.012) −0.093*** (0.025) −0.054*** (0.012) −0.093*** (0.025)
Total schooling years (year) −0.038 (0.027) −0.065 (0.055) −0.038 (0.027) −0.065 (0.055)
Off-farm income (10,000 yuan) 0.050 (0.066) 0.116 (0.117) 0.047 (0.067) 0.115 (0.116)
Farm size (mu) 0.043 (0.042) 0.085 (0.079) 0.048 (0.042) 0.093 (0.079)
Irrigation ratio 0.772 (0.522) 1.558 (0.949) 0.778 (0.528) 1.612 (0.950)
Ratio of construction costs −0.196*** (0.056) −0.369** (0.106) −0.200*** (0.056) −0.372** (0.106)
Times of major reallocations −0.003 (0.103) −0.052 (0.128) −0.015 (0.105) −0.033 (0.183)
Years of awareness of the technology −0.067*** (0.023) −0.123*** (0.045) −0.072*** (0.024) −0.131*** (0.047)
Fertilizer price (yuan/kg) 0.007 (0.099) 0.020 (0.155) 0.007 (0.099) 0.019 (0.154)
Distance to road (km) 0.148 (0.095) 0.267** (0.224) 0.154 (0.095) 0.281** (0.222)

Dummies and constant terms
Crop dummy 0.337 (0.286) 0.496 (0.567) 0.330 (0.287) 0.476 (0.567)
Village dummies Yes Yes Yes Yes
Constant terms 3.764 (3.360) 3.612 (6.699) 3.620 (3.343) 3.285 (6.660)
Observations 456 456 456 456
Pseudo R-squared 0.503 0.516 0.505 0.517

*** denotes significance at 1%, ** 5% and * 10%. Data used in this table is from the field survey described in Section 4.
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for farmers to conduct greenhouse farming if they have enough remaining land to grow grain to feed their family. This is also
consistent with the result in Table 3.

As expected, the residuals obtained from the first stage of the two-step estimation procedure are also significant, and the result
suggests there is indeed an endogeneity problem in this duration analysis, which is consistent with what the Durbin–Wu–
Hausman test has shown in Table 3. Since the first stage of the two-step procedure for the duration analysis is almost the same as
the first stage of 2SLS (the only difference being that the year of awareness of technology in Table 4 is removed because it is
identical to the dependent variable in the duration analysis), the distance to neighborhood is negatively correlated with social
learning, which is also consistent with the results in Table 3.
7. Conclusions

In this paper, we aim at an important gap left by the existing literature, both theoretical and empirical, which has not
modeled the effect of social learning in a real option context, particularly with respect to the reduction of uncertainty.We fill this
gap by modeling social learning as a way of reducing parameter uncertainty, thus facilitating technology adoption and reducing
the waiting time in irreversible investment. We use household-level data from intermediate-technology greenhouse adoption
in northern China to test the predictions in both a linear probability model and a duration analysis, with the following main
results:

(1) Social learning has a significant positive impact on greenhouse adoption: 10 more adopters in the farmer's social network
increase the probability of adoption by 32%, which is an economically significant effect. Moreover, results from the duration
analysis confirm this finding through social learning reducing the waiting time significantly in greenhouse adoption.

(2) The empirical results in both the linear probability model and the duration model confirm what we know from the
conventional theory of irreversible investment: higher uncertainty about the future investment value results in less
likelihood of adoption and longer waiting times.

(3) Insecure land property rights discourage adoption and also increase the waiting time until the irreversible investment is
made.

Our paper also provides an answer to a general question: How could small farmers in developing countries deal with the risk
from irreversible investment and incomplete information? Our results suggest that social learning can be one effective solution.
Therefore, the policy implication from this paper is clear: when small farmers face technology adoptions such as investing in
tube wells or machinery, helping several farmers adopt successfully may be the best way to induce more adoption in their
village.
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