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This simulation-based research produces a set of forecast land use data of Qinghai Province, China, applying the land use change
dynamics (LUCD)model.The simulation results show that the land use patternwill almost keep being consistent in the period from
2010 to 2050 with that in 2000 in Qinghai Province. Grassland and barren or sparsely vegetated land will cover more than 80% of
the province’s total area. The land use change will be inconspicuous in the period from 2010 to 2050 involving only 0.49% of the
province’s land.The expansion of urban and built-up land, grassland, and barren or sparsely vegetated land and the area reduction of
mixed dryland/irrigated cropland and pasture, water bodies, and snow or ice will dominate land use changes of the case study area.
The changes of urban and built-up land and mixed dryland/irrigated cropland and pasture will slow down over time. Meanwhile,
the change rates of water bodies, snow and ice, barren or sparsely vegetated land, and grassland will show an inverted U-shaped
trajectory. Except for providing underlying surfaces for RCMs for future climate change assessment, this empirical research of
regional land use change may enhance the understanding of land surface system dynamics.

1. Introduction

Land use change and the resulting changes in land surface
characteristics are recognized drivers of climate change [1–
3].The biogeochemical impacts of land use change on the cli-
mate through changing atmospheric concentrations of green-
house gases (GHGs) have been of great concern. For instance,
theGHGs from agriculture land uses are estimated to account
for 10–20% of the total global anthropogenic emissions [4].
The gross CO

2
emissions from tropical deforestation are

roughly equivalent to 40% of global fossil fuel emissions from
1990 to 2007 [5]. Besides lands under management, natural
land cover types such as wetlands and primeval forest are also
found to be large sources and sinks of GHGs [6]. Land use
change affects climate by not only impacting GHG emissions
but also land surface properties. Urban heat island (UHI) is

one of the most noticeable effects of land surface property
changes on local climate change [7–9]. Land use change
may result in changes of thermal properties (albedo, thermal
conductivity, and emissivity) and further affect the surface
energy budgets as well as atmospheric circulations [10–13].
Consequently, land use data should play a central role in
climate change assessment.

While the importance of land use change in climate
change modeling has been fully realized, most regional cli-
mate models (RCMs) use historical and constant land use
data as underlying surface data [14, 15]. Always, simulation of
climate change is implemented by using land use data of one
year of history as underlying surfaces which are assumed to
be constant throughout the whole simulation. It is reasonable
to assume that the underlying surfaces are constant in exper-
iments of separating the effects of other factors on climate
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change from those of land use change. However, for climate
change prediction and assessment, the constant underlying
surfaces will affect the accuracy of RCMs.

It has been proved that the alteration of underlying
surfaces has significant impacts on the simulation results of
RCMs. Jacobson and Ten Hoeve [16] analyzed the effects of
conversion of all roofs worldwide to white roofs on temper-
ature with a one-way-nested global-regional Gas, Aerosol,
Transport, Radiation, General Circulation, Mesoscale, and
Ocean Model (GATOR-GCMOM) and found that white
roofs cooled population-weighted temperatures by about
0.02K but warmed the Earth overall by about 0.07K. Rozoff
et al. [17] estimated the land use impacts on thunderstorms
and found that urban expansion and its initiated UHI played
the largest role in initiating deep,moist convection downwind
of the city. Guo et al. [18] numerically investigated the effect of
urbanized modification on cloud structure and precipitation
distribution by using the fifth-generation Pennsylvania State
University-National Center for Atmospheric Research (PSU-
NCAR) Mesoscale Model (MM5) and found that the peak
rainfall located near borderline was 40mm for the nonur-
banized condition and 65mm for the urbanized condition.
Trusilova et al. [19] investigated the effects of urban land on
the climate in Europe on local and regional scales with a
modified land surface scheme.The simulation results showed
that the diurnal temperature range in urbanized regions was
reduced on average by 1.26 ± 0.71∘C in summer and by 0.73 ±
0.54∘C inwinter. All above researches have illustrated that it is
essential to alter the underlying surfaces in RCMs to conduct
more realistic simulations.

While the historic underlying surfaces for RCMs can be
derived from remote-sensing images, ground investigation,
and aerial photography, the future land use data can only be
obtained through model-based simulation. Accurate simu-
lation of land use change is challenging because of the geo-
graphically complex socioeconomic drivers and natural con-
straints. Overall, simulation models of land use change can
be classified into three categories: empirical statistical model,
cellular automaton (CA) model, and agent-based model
(ABM) [20].TheCAmodel with the superiority of simulation
process visualization is widely used in land use change simu-
lation, especially urban expansion [21–23]. The Agent-Based
Models of Land Use and Land Cover (ABM/LUCC) model
were regarded as the most potential modeling strategies for
land use change [24, 25], but most of the existing models
are not compatible with RCMs. Deng et al. provide a novel
framework of land use change dynamics (LUCD) model
to introduce parameterized land use data into RCMs. The
model consists of three modules, namely, economic module,
vegetation change module, and agent-based module, and is
extraordinarily capable of simulating the land surface proc-
esses and their changing patterns in theory.

This empirical study aims to produce a set of forecast
land use data for RCMs applying the LUCD model. Qinghai
Province which is located in the northwest of country was
chosen as our case study area. The major contribution of
this paper is that it provides future underlying surface data
for RCMs for Qinghai Province and a demonstration of the
LUCD model’s application. The predicted land use data of

this simulation work can be used for future climate change
assessment by altering the underlying surfaces of RCMs.
This empirical study illustrates that the LUCD model can be
coupled with RCMs by introducing its results into RCMs
as underlying surfaces. The case study area and simulation
scheme are described in Section 2. The data used in our
simulation are also introduced in this section.The results and
discussion are provided in Section 3 and concluded in the
final section.

2. Data and Methodology

2.1. Study Area. Qinghai Province which is located at the
northeastern part of the Tibetan Plateau is the origins of
the Yellow River, the Yangtze River, and the Lancang River.
The province ranging from 89∘35󸀠 E to 103∘04󸀠 E and from
31∘40󸀠N to 39∘19󸀠N is a plateau with an average elevation
of over 3000m (Figure 1). The annual average temperature
and precipitation in Qinghai Province range from −5.7∘C
to −8.5∘C and from 50mm to 450mm, respectively. The
continental climate with scarce rainfall, high evapotranspi-
ration, and low average temperature makes the ecological
environment of the province especially fragile [26]. Due to
the important function of water source and ecosystem con-
servation, Qinghai Province is concerned by the research
fields of climate change, land use, and cover change, and eco-
hydrology. Land use change of historical period in Qinghai
Province has been widely studied [27–29]. More than 40% of
the province’s land is unsuitable for either farming or grazing.
According to the remote sensing data in 2000, grassland and
barren or sparsely vegetated land cover 52.91% and 34.96% of
the province’s total land area, respectively (Figure 1).

The implementation of the Great Western Development
Strategy in 2000 has undoubtedly accelerated the economic
development of Qinghai Province. The imbalanced increase
of output value of different industries results in industrial
structure changes. The proportions of three major industries
changed from 15.2 : 41.3 : 43.5 in 2000 to 10.0 : 55.1 : 34.9 in
2010. With the gradual decrease of the proportion of primary
industry, the percentage of secondary industry has increased
year by year and surpassed that of tertiary industry. This
change indicates that there are abundant labors transferred
from primary industry to secondary industry. This labor
transfer leads to population migration from rural area to
cities, which undoubtedly accelerates the urban expansion
and cropland abandon.

2.2. Land Use Change Dynamics Model. The LUCD model
is constituted by three modules, namely, economic module,
vegetation change module, and agent-based module. In this
study, a computable general equilibrium (CGE)model is used
in the economic module to calculate the area demand for all
land use types in economic activities maximizing economic
utility of land uses (Figure 2). And the dynamics of land use
(DLS) model is applied to allocate simulated land use change
demand at regional scale to grids [30, 31]. Land is regarded
as one of the three primary factors input in commodity pro-
duction [32]. The land prices vary along with not only time
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mixed tundra, and bare ground tundra in Qinghai Province, China.

Figure 1: Location and land uses/cover in Qinghai Province of China in 2000.

but also location and productivity. The land prices are not
introduced in the economic module because CGE model
does not support a diverse prices modeling framework.
Specifically, land uses in economic development in a specific
agro-ecological zone (AEZ) are summarized as follows:
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where 𝑌
𝑖,𝑒
is the value added of the 𝑖th firm in the 𝑒th AEZ;

𝐴𝑒𝑐
𝑙,𝑖,𝑒

is the input area of the 𝑙th land use type in 𝑖th firm
in the 𝑒th AEZ; 𝐹

ℎ,𝑖,𝑒
is the input of the ℎth factor by the 𝑖th

firm in the 𝑒thAEZ; 𝑏
𝑖,𝑒
is the scaling parameter in production

function, also called total factor productivity (TFP); 𝜁
𝑙,𝑖,𝑒

is
the share parameter in production functions; and 𝛽

ℎ,𝑖,𝑒
is the

share parameter in production functions.
The agro-ecological zone (AEZ) model is used in the

vegetation change module to assess the growth suitability

of specific vegetation and provides the possibility of vege-
tation change. The AEZ model is developed by Food and
Agriculture Organization (FAO) of the United Nations with
the collaboration of the International Institute for Applied
Systems Analysis (IIASA) [33]. The AEZ model is chosen
because it is naturally correlated with AEZs facilitating the
coupling of economicmodule and vegetation changemodule.
Climate, topography, and soil characteristics are three key
inputs of the AEZmodel.Themodel can estimate the climate
productivity of vegetation driven by climate changes. The
possibility of vegetation change can be calculated based on
the climate productivity from AEZ model:

𝑃V,𝑝,𝑡+1 =
𝑌V,𝑝,𝑡+1 − 𝑌V,𝑝,𝑡

𝑌V,max
, (2)

where 𝑃V,𝑝,𝑡+1 is the possibility of vegetation change of the Vth
type of vegetation in the pixel 𝑝 in the (𝑡+1)th year; 𝑌V,𝑝,𝑡 is
the climate productivity of the Vth type of vegetation in the
pixel 𝑝 in the 𝑡th year; and 𝑌V,max is the maximum climate
productivity of the Vth type of vegetation. A superiority index
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Figure 2: Application framework of land use change dynamics model.

is proposed to compare the superiority of different vegetation
in the specific pixel and time:

𝑆V,𝑢,𝑝,𝑡+1 =
𝑌V,𝑝,𝑡+1 − 𝑌V,𝑝,𝑡

𝑌
𝑢,𝑝,𝑡+1

− 𝑌
𝑢,𝑝,𝑡

, (3)

where 𝑆V,𝑢,𝑝,𝑡+1 is the superiority index of the Vth type of
vegetation compared with the 𝑢th type of vegetation in the
pixel 𝑝 in the (𝑡+1)th year.

The agent-based module identifies if the land use change
demand and the possible vegetation change can be realized
under the background of irrational decisions [34]. A case-
based reasoning (CBR) strategy is used in agent-based
module in this study [35]. The dissimilarities between a
given household ℎ and all defined household groups in the
population can be measured by
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, (4)

where𝐷
ℎ,𝑔

is the distance fromhousehold ℎ (ℎ = 1, 2, . . . , 𝐻)
to the household group 𝑔 (𝑔 = 1, 2, . . . , 𝐺); 𝑉

ℎ,𝑠
is the value

of variable 𝑠 (𝑠 = 1, 2, . . . , 𝑆) representing the character
of household ℎ; 𝑉

𝑔,𝑠
is the average value of variable 𝑠 of

households in household group 𝑔; and 𝑤
𝑠
is the weight

coefficient of the variable 𝑠 in explaining the character of
household and household group.The household ℎ is assigned

into the most similar household group and makes the same
land use change decision with the household group:

𝑔
󸀠
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ℎ,1
, 𝐷
ℎ,2
, . . . , 𝐷
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where 𝑔󸀠 is the most similar household group to household
ℎ. Based on the case database of land use change decision, we
can assign each household into one similar household group
and deduce its land use decision. For the assessment result
of possible vegetation change, the LUCD model provides
a criterion to judge which kind of vegetation change will
happen in a specific pixel in the agent-based module:

𝐿V,𝑝

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1, if for ∀𝑢 ̸= V, 𝑃V,𝑝,𝑡+1 > 0, 𝑆V,𝑢,𝑝,𝑡+1 > 1 or ≤ 0,

or 𝑃V,𝑝,𝑡+1 ≤ 0, 𝑆V,𝑢,𝑝,𝑡+1 > 0 or ≤ 1,

0, if for ∀𝑢 ̸= V, 𝑃V,𝑝,𝑡+1 > 0, 𝑆V,𝑢,𝑝,𝑡+1 > 0 or ≤ 1,

or 𝑃V,𝑝,𝑡+1 ≤ 0, 𝑆V,𝑢,𝑝,𝑡+1 > 1 or ≤ 0,

(6)

where 𝐿V,𝑝 = 1 denotes that the Vth type of vegetation is the
dominant vegetation in the pixel 𝑝 and 𝐿V,𝑝 = 0 denotes that
the Vth type of vegetation is not the dominant vegetation in
the pixel 𝑝. For a specific pixel, vegetation change will happen
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if only the productivity of the one kind of vegetation exceeds
that of the original dominant vegetation:

𝐿𝑉
𝑝,𝑡+1

= V, if for ∀𝑢 ̸= V, 𝑅𝑌V,𝑝,𝑡+1 > 𝑅𝑌𝑢,𝑝,𝑡+1,

𝑅𝑌V,𝑝,𝑡+1 = 𝑅𝑌V,𝑝,𝑡 +
𝑅𝑌V,𝑝,𝑡
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where 𝐿𝑉
𝑝,𝑡+1

denotes the new vegetation type that char-
acterized the pixel 𝑝 in the (𝑡+1)th year; 𝑅𝑌V,𝑝,𝑡+1 is the
productivity of the Vth type of vegetation in the pixel 𝑝
in the (𝑡+1)th year; 𝑅𝑌

𝑝,𝑡
is the total productivity of all

the vegetation in the pixel 𝑝 in the 𝑡th year; 𝑅𝑌
𝑝,0

is the
total productivity of all the vegetation in the pixel 𝑝 in the
base year; 𝐴

𝑝
is area of pixel; 𝐴V,𝑝,0 is area the Vth type of

vegetation in the pixel 𝑝 in the base year; and 𝑌V,𝑝,0 is the
productivity of the Vth type of vegetation in the pixel 𝑝 in
the base year. The LUCD model, which is spatially explicit,
integrates human activities and climate change, rational and
irrational decision makings, and macro- and microdynamic
models into the land use change.

2.3. Data andProcess. The landuse data involved in this study
was derived from the dataset of the Project of Impacts of
Large-Scale Land Use Change on Global Climate, National
Basic Research Program of China (973 Program).The dataset
is originally established with a 1 km × 1 km grid scale using
the classification system of United States Geological Survey
(USGS) based on the interpretation of remotely sensed
imagery data and ground survey of 2000 (Figure 1). The data
of Social Accounting Matrix (SAM) which is the basis of
the economic module of LUCD model is derived from the
database of SinoTERM, a multiregional computable general
equilibrium (CGE) model of China. The database covers 31
provinces andmunicipalities includingQinghai Province and
extends the published national input-output table of China
for 2002 to 137 sectors [36, 37]. The climate data such as
solar radiation, temperature, precipitation, and latent heat
flux from 2010 to 2050 are derived from the simulation results
of WRF (Weather Research and Forecasting) model. These
hourly data of solar radiation, temperature, precipitation, and
latent heat flux were reconciled to daily data for the use
of AEZ model. The case data of land use decision making
which are needed in the agent-basedmodule of LUCDmodel
are derived from the survey data of the Project of Impacts
of Large-Scale Land Use Change on Global Climate, 973
Program.

3. Results and Discussion

The future land use in Qinghai Province from 2010 to 2050
was obtained by using the LUCD model. The simulation
results show that there will be totally eighteen land use types
in future in Qinghai Province which remain constant with
those in 2000 (Figures 1 and 3). And the land use pattern
will almost keep consistent. There will be about 3.54 × 105

hectares of land converted during the period from 2010 to
2050 accounting for 0.49% of the province’s total land area.
The expansion of urban and built-up land, grassland, and
barren or sparsely vegetated land and the area reduction of
mixed dryland/irrigated cropland and pasture, water bodies,
and snow or ice will be the dominating of future land use
changes of the case study area.

The change of urban and built-up land and mixed dry-
land/irrigated cropland and pasture will be mainly due to
urbanization. The future population migration from rural
area to cities will lead to demand increase of urban and built-
up land. The expansion of urban and built-up land will seize
the areas of other land use types such as dryland cropland
and pasture, mixed dryland/irrigated cropland and pasture,
grassland, and barren or sparsely vegetated land (Figure 3).
The simulation results show that the urban and built-up land
will expand by 1.12 × 104 hectares with an average annual
expansion rate of 0.39% (Figure 4). There will be 3.60 × 103
hectares of barren or sparsely vegetated land converted to
urban and built-up land in the period from 2010 to 2050
accounting for 32%of the newurban and built-up land.As the
second largest source of urban and built-up land, grassland
will reduce by 2.80 × 103 hectares. And there will be 2.50 ×
103 hectares of mixed dryland/irrigated cropland and pasture
loss due to urban and built-up land expansion. In addition,
the rural-urban migration will result in a conversion of
0.30 × 103 hectares from mixed dryland/irrigated cropland
and pasture to grassland. Consequently, the area of mixed
dryland/irrigated cropland and pasture will reduce by 2.80 ×
103 hectares (about 0.41%) in the period from 2010 to 2050.

The simulation results show that the change rates of urban
and built-up land and mixed dryland/irrigated cropland and
pasture will decrease along with time (Figure 4). The urban
and built-up land will expand by 4.10 × 103 hectares in the
period from2010 to 2020 and by 3.70× 103 hectares, 2.00× 103
hectares, and 1.40 × 103 hectares in the periods of 2020–2030,
2030–2040, and 2040–2050, respectively. The average annual
expansion rate will fall from 1.07% in the period from 2010
to 2020 to 0.18% in the period from 2040 to 2050. The mixed
dryland/irrigated cropland and pasture will reduce by 1.40 ×
103 hectares in the period from 2010 to 2020. This figure will
decline to 0.80 × 103 hectares and 0.60 × 103 hectares in the
periods of 2020–2030 and 2030–2040, respectively. The area
ofmixed dryland/irrigated cropland and pasture will stabilize
in the period from 2040 to 2050 at 6.81 × 105 hectares.

The global climate change will affect the vegetation pat-
tern through altering temperature, precipitation, solar radia-
tion, and so forth. Future global warming will accelerate the
evaporation and lead to shrinkage of water bodies and melt
of snow and ice. The simulation results show that the area of
water bodies will reduce by 3.17 × 105 hectares and the area
covered by snow and ice will reduce by 3.18 × 104 hectares
during the period from 2010 to 2050 (Figure 5). Almost all the
reduced water bodies and about 54% of the lost snow and ice
covered area are expected to convert to grassland (Figure 3).
Consequently, the total area of grassland will expand by 3.32
× 105 hectares (about 0.87%) in the period from 2010 to 2050
(Figure 6). The rest of the reduced snow and ice covered land
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Figure 3: Simulated LUCC in Qinghai Province of China, 2010–2050.
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Figure 6: Area changes of grassland and barren or sparsely veg-
etated land measured by thousand hectares in Qinghai Province,
China.

(1.45 × 104 hectares) will mainly convert to barren or sparsely
vegetated land which will expand by 1.45 × 104 hectares in the
period from 2010 to 2050 (Figure 3).

The area of reduced water bodies will be 7.94 × 104
hectares in the period from 2010 to 2020 and climb to 9.42
× 104 hectares in the period from 2020 to 2030. Then, this
figure will turn to decline to 8.43 × 104 hectares in the period
from 2030 to 2040 and 5.90 × 104 hectares in the period from
2040 to 2050. Similarly, the area of reduced snow and ice will
reach up to 1.32 × 104 hectares in the period from 2020 to
2030 and finally decline to 0.27 × 104 hectares in the period
from 2040 to 2050.The barren or sparsely vegetated land will
totally expand by 0.14 × 104 hectares in the periods 2010–2020
and 2040–2050 and will expand by 0.36 × 104 hectares and
0.59 × 104 hectares in the period from 2020 to 2030 and the
period from 2030 to 2040, respectively. The area of grassland
will expand by 8.53 × 104 hectares in the periods from 2010
to 2020. This figure will reach up to 10.14 × 104 hectares in
the periods from 2020 to 2030 and then decline to 5.97 × 104
hectares in the periods from 2040 to 2050.

The simulation results of LUCDmodel are in accordance
with the existing researches. Unlike the existing researches,
the simulation results of this research can be used as the
underlying surfaces of RCMs. This benefits from the mod-
eling framework of LUCD model which is compatible with
RCMs. By introducing the simulation results of this study
in RCMs, the accuracy of climate change assessment can
be improved. This empirical research may also enhance the
understanding of land surface system dynamics by inte-
grating human activities and climate change, rational and
irrational decision makings, and macro- and microdynamic
models into land use change.

4. Conclusions

A simulation-based research on land use change was imple-
mented. Qinghai Province was selected as case study area due
to its importance of water source and ecosystem conservation
for China as well as global climate change and land use and
land cover change researches for the world. One contribution
of this research is the application of the LUCD model which
is designed to be compatible with RCMs. This makes it
possible to introduce the simulated future land use data into
RCMs as underlying surface data. In addition, the land use
data provided by this research can inform decision making
because the simulation was implemented by taking both
human activity and climate change into consideration.

The main conclusions of this work can be summarized as
follows.

(1) The land use pattern will keep being consistent in
the period from 2010 to 2050 with that in 2000 in Qinghai
Province. There will be totally eighteen land use types in
future. Grassland and barren or sparsely vegetated land will
totally cover more than four-fifths of the province’s area. The
landuse changewill be inconspicuous in the period from2010
to 2050 involving 0.49% of the province’s total land.

(2) The expansion of urban and built-up land, grassland,
and barren or sparsely vegetated land, and the area reduction
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of mixed dryland/irrigated cropland and pasture, water
bodies, and snow or ice will dominate land use changes of
the case study area.The reduction of mixed dryland/irrigated
cropland and pasture and urban and built-up land expansion
will be mainly due to the future urbanization. The area
increase of grassland will mainly come from the shrinkage
of water bodies. The changes of urban and built-up land and
mixed dryland/irrigated cropland and pasturewill slow down
over time. Meanwhile, the change rates of water bodies, snow
and ice, barren or sparsely vegetated land, and grassland will
show an inverted U-shaped trajectory.

(3) This model-based simulation provides underlying
surfaces for RCMs for future climate change assessment as
well as land use management decision-making information.
The empirical research of regional land use change enhances
the understanding of land surface system dynamics.
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[32] B. Güneralp and K. C. Seto, “Environmental impacts of urban
growth from an integrated dynamic perspective: a case study of
Shenzhen, South China,” Global Environmental Change, vol. 18,
no. 4, pp. 720–735, 2008.

[33] J. Schmidhuber and F. N. Tubiello, “Global food security under
climate change,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 104, no. 50, pp. 19703–19708,
2007.

[34] J.-C. Castella, T. N. Trung, and S. Boissau, “Participatory sim-
ulation of land-use changes in the northern mountains of
Vietnam: the combined use of an agent-based model, a role-
playing game, and a geographic information system,” Ecology
and Society, vol. 10, no. 1, pp. 1–32, 2005.

[35] R. B. Matthews, N. G. Gilbert, A. Roach, J. G. Polhill, and N. M.
Gotts, “Agent-based land-use models: a review of applications,”
Landscape Ecology, vol. 22, no. 10, pp. 1447–1459, 2007.

[36] M. Horridge and G. Wittwer, “The economic impacts of a
construction project, using SinoTERM, a multi-regional CGE
model of China,”China Economic Review, vol. 19, no. 4, pp. 628–
634, 2008.

[37] G. Wittwer and M. Horridge, “A multi-regional representation
of China’s agricultural sectors,” China Agricultural Economic
Review, vol. 1, no. 4, pp. 420–434, 2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Climatology
Journal of

Ecology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Earthquakes
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2014

Mining

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal of

Geophysics

Oceanography
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

  Journal of 
 Computational 
Environmental Sciences
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of
Petroleum Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geochemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Atmospheric Sciences
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oceanography
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mineralogy
International Journal of

Meteorology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Paleontology Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Geological Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geology  
Advances in


