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Abstract

China’s research and development (R&D) policy has changed considerably over
recent decades, and great changes occurred in 2006 when the main programme
objective of China’s R&D changed from the 863 Programme and 973 Programme
to the National Science and Technology Major Project. One topic that has drawn
extensive attention is whether the investment reform improved R&D productivity
in China. Using a unique panel dataset from 160 universities, this paper examines
the effect of the investment reform on productivity improvement in China’s agricul-
tural biotechnology sector. We use a panel count data model with a dynamic feed-
back mechanism to model the knowledge production process. Strong evidence
indicates that the investment reform greatly contributes to knowledge output pro-
duction in China’s agricultural biotechnology sector. We also find that the input
quality is more important than the absolute quantity; human research capacity
exhibits the greatest contribution to the output of patents; past knowledge accumu-
lation helps produce more patents; and entry barriers to patent production exist in
China’s agricultural biotechnology sector. Moreover, the patent explosion in China
may have been largely caused by improvements in the human capital input quality.
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1. Introduction

The Chinese government has implemented a series of national research and develop-
ment (R&D) programmes to realise its development objectives since the middle of the
1980s. Before 1986, when the government wanted to launch a research programme –
such as the atomic bomb or the Artemisia annual programme – the government would
draft researchers from throughout the entire country to form a research group or even
a research institute and would then provide funding. In 1986, based on some promi-
nent scientists’ suggestions, the Chinese government launched its first national R&D
programme, i.e. the National High Technology Research and Development Pro-
gramme (Rozelle et al., 1997; Gilmour et al., 2015). Because the programme started in
March 1986, it was named the 863 Programme. The objectives of the 863 Programme
were to boost the innovation capacity in high-tech sectors, achieve ‘leap-frog’ devel-
opment in key high-tech fields and gain a foothold in the world arena. Agricultural
biotechnology (agbiotech) research was one of the important fields in the programme.

However, after the 863 Programme ran for several years, the government and scien-
tists realised that it was difficult to achieve breakthroughs in some high technology
fields without the support of key basic research. Subsequently, the National Key Basic
Research and Development Programme (973 Programme) was proposed by scientists
and approved by the government in 1997 and established in 1998. This programme
aims to support key basic research and development (Rozelle et al., 1997; Gilmour
et al., 2015). The objective of the 973 Programme was to enhance the independent
innovation ability of basic research in China and provide a source of innovation for
the formation of high-tech in the future. Basic agbiotech research was also an impor-
tant objective of the 973 Programme.

Since 2006, the government has launched another new National R&D programme,
the National Science and Technology Major Project (STMP). Based on the ‘National
Medium and Long-term Science and Technology Development Plan Outline (2006–
2020)’, the programme supported 16 major projects – objective of these projects being
to generate national major strategic products and key common technologies and pro-
mote the formation of critical projects. The National Genetically Modified Variety
Development Special Programme (GMSP), which was established in 2008, is one of
the major projects. In contrast to the 863 Programme, which focused only on high
technology, and the 973 Programme, which focused only on basic research, the
GMSP aims to develop and commercialise new biotechnology as well as to conduct
key basic research. The aim of the GMSP is to spur the growth of patents and new
genetically modified (GM) varieties in the agricultural biotech research sector.

Both the amount and structure of government funding can be important for the
productivity of government research institutes. However, does the reform of the
recent technological programmes improve R&D productivity in China? In particular,
is knowledge output generated as expected under different research funding mecha-
nisms? China files the largest number of patent applications in the world (Hu et al.,
2017). To some extent, patents have always been used as a measure of innovation,
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and the patent surge in China seems paradoxical given China’s weak record of pro-
tecting intellectual property rights (Hu and Jefferson, 2009). In addition to R&D
investment and foreign direct investment mentioned in the existing literature, we
investigate whether any other factors contribute to the patent boom in China. In other
words, do the investment objectives change and does the improvement in researcher
quality contribute to the patent surge in China?

Furthermore, in contrast to other countries, where genetically modified (GM) tech-
nologies are mainly developed by the private sector, most GM technologies and prod-
ucts in China are developed by public research institutes (Huang et al., 2002; Pray
et al., 2002; Cai et al., 2017). Is there any difference between China’s public-dominated
agbiotech R&D and international private-dominated agbiotech R&D? Foltz et al.
(2003) find there are no barriers to entry in agbiotech production in the United States,
but are there any entry barriers in China’s public sector-led GM technology produc-
tion? These issues have not been examined in the literature to date.

To answer these questions, we focus on patents and published articles as measures
of China’s agbiotech R&D output. We examine whether the national programmes
increased the productivity of agbiotech R&D and whether the programmes realised
their policy objectives. Because patents work best in applied research and are less
effective in stimulating fundamental research, we use patents as the main output of
high technology research, and research papers as the main output of basic research.
We use the number and quality of patents and research papers to measure the success
of the 863 Programme and 973 Programme, respectively, and also measure the pro-
ductivity of GMSP by both patents and research papers.

The process of technological innovation is dynamic, and prior success could have
an impact on the probability of current success in technological innovations (Blundell
et al., 1995), creating significant challenges for empirical analyses. We use unique
panel data and provide an explicit examination of the dynamic feedback. This
approach captures the inherently dynamic and nonlinear process of innovative activi-
ties and examines both observed and unobserved heterogeneity across universities in
terms of knowledge output production (Blundell et al., 1995; Foltz et al., 2003). Exist-
ing research indicates that the university research production process is typically time
consuming (Pakes and Griliches, 1980; Hall et al., 1986; Foltz et al., 2012). Based on
consultation with experts in the agbiotech field, we use lagged inputs of three years for
patents and two years for published articles in the modeling process.

The econometric model of knowledge output production described below combines
a negative binomial count model with a random effects panel data model. More
specifically, the empirical modelling effort tests five hypotheses regarding the impact
of the changing investment systems on knowledge output production. The five
hypotheses are listed as follows.

Hypothesis 1: Different programmes have objective effects, wherein the investment of
the 863 Programme and the GMSP should significantly influence the output of
patents, while that of the 973 Programme and the GMSP should significantly influ-
ence the output of published papers.

Hypothesis 2: Investment reform effects occur, wherein GMSP funding should lead
to a significant increase in the knowledge outputs compared with those of the 863 and
973 programmes.

� 2019 The Agricultural Economics Society

Funding Structure and R&D Productivity 289



Hypothesis 3: High-quality input effects occur, wherein the inputs associated with
higher quality (e.g. higher percentage of researchers with PhD degrees) should have a
greater impact on knowledge output production, suggesting that the quality of the
inputs for a scientific production function may have greater importance than the abso-
lute quantity.

Hypothesis 4: Themost crucial factor for output in agbiotech is human research capacity
improvements, rather than the amount of investment, wherein human research capacity
improvements are a critical determinant of agbiotech research output in China.

Hypothesis 5: Correlated dynamic effects and patenting culture effects occur, wherein
agbiotech patent production is positively influenced by past knowledge accumulation
(i.e. path dependence), which suggests that individuals with a history of more patents
should also have more agbiotech patents and implies that entry barriers occur in
agbiotech research output production.

The remainder of this paper is organised as follows. Section 2 presents the methodology
and data sources. Section 3 provides the descriptive analysis and summary statistics of
the inputs and outputs of agbiotech research in China. Section 4 describes the results of
the econometric models, and Section 5 provides the conclusions and implications.

2. Methodology

2.1. Theoretical framework for modelling university research output

The primary aim of this paper is to determine whether the recently developed funding sys-
tem in China has a greater impact on the knowledge output of universities and research
institutes asmeasured by patents and published articles (Foltz et al., 2007;Weber andXia,
2011; Foltz et al., 2012). Following Blundell et al. (1999) and Foltz et al. (2003), a classical
research productionmodel is specified as follows:

Yit ¼ f Xit; uitð Þ ¼ f Lit�s;Kit�s;Oit; uitð Þ for i ¼ 1; . . .N
t ¼ 1; . . .T

ð1Þ

where Yit is a measure of research output and includes 1) patent applications or
patents authorized, and 2) research articles published, with i indexing universities and
t indexing years in our application;Xit is a vector of the characteristics of the universi-
ties, including human capital inputs, capital and other factors, e.g. the research his-
tory of the university; L represents human capital and includes both the quality and
quantity of researchers; and K represents capital and includes research funds from the
863 and 973 programmes, the GMSP and other funding sources. Earlier work found
that human capital and capital inputs have a significant lagged effect on research out-
put (Pakes and Griliches, 1980; Hall et al., 1986). We also use a lagged form of human
capital and capital input to reflect the fact that research leading to research output
could take time. The determination of this lag, i.e. the value of s, is driven by the time
spent on research. Here, we use 3 for the value of s for patent production and 2 for
published research articles based on consultations with experts in the agbiotech field.2

In addition, Oit describes other contemporaneous impact factors, and uit represents
unobservable university differences.

2Other lag lengths did not improve the empirical performance of our models.
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Patents are an important measure of technological innovation. Because technologi-
cal innovation is always described as an inherently dynamic and nonlinear process
and evidence suggests that historical dependence exists in innovation activities (Blun-
dell et al., 1995; Foltz et al., 2003), we also focus on modelling the importance of
unobserved heterogeneity with dynamic feedback mechanisms for patent production.
The patent production equation is respecified as follows:

Yit ¼ f Xit; uitð Þ ¼ f Lit�s;Kit�s;Git�1;Oit; uitð Þ for i ¼ 1; . . .N
t ¼ 1; . . .T

ð2Þ

where Git�1 represents a university’s patenting culture and accumulated patent knowl-
edge stock. We assume that previous patents provide experience and knowledge about
the patenting process, but past innovations depreciate over time; thus, the contribu-
tion of older experience and knowledge becomes less valuable as time passes (Hall
et al., 1986; Blundell et al., 1995). More specifically, Git�1 is defined as follows to
reflect a dynamic feedback effect:

Git�1 ¼ Yit�1 þ 1� rð ÞGit�2; ð3Þ
where r is the depreciation rate. Following Blundell et al. (1995) and Foltz et al.
(2003), we take the depreciation rate to be 30%, 20% and 10% to reflect the diminish-
ing contribution of old experience and knowledge.

2.2. Specification of the empirical model

The dependent variable in our models is either the number of patents produced or the
number of articles published, which are count (non-negative integer) variables. It is
well known that the classical linear model is inadequate in modelling a discrete vari-
able because the predicted probabilities may be higher than unity (Blundell et al.,
1995; Cai et al., 2016). The most frequently used models for count data are the Pois-
son and negative binomial models (Hausman et al., 1984; Miaou, 1994; Jansakul and
Hinde, 2002; Yang et al., 2009). The common first moment condition for these models
is as follows:

EðYitÞ ¼ eX
0
itb; ð4Þ

where Yit represents the research output. Accordingly, the research output model pre-
sented above can be parameterised by the following linear equation:

X
0
itb ¼ h0 þ h1invest Tit�sþh2per 863it�s þ h3per 973it�s þ h4per GMSPit�s

þh5per phdit�s þ h6per masterit�sþh7nationali þ h8Git�1 þ gi þ tt
ð5Þ

where Invest_T is the total investment, and the next three variables denote the
research funding resources: per_863 is the percent of investment from the 863 Pro-
gramme, per_973 is the percent of investment from the 973 Programme, per_GMSP is
the percent of investment from the GMSP, and the comparison group is funding from
other sources, including international funding. The following two variables represent
the quality of the human capital input, with per_phd representing the percentage of
faculty with a PhD degree and per_master representing the percentage of faculty with
a master’s degree, and the comparison group comprises faculty with a maximum of a
bachelor’s degree. National is a dummy variable representing a strong research capac-
ity. Our national university designation includes national research institutes (such as
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the research institutes included in the Chinese Academy of Sciences) and the universi-
ties included in the ‘985’ project, which aims to build world-class universities in
China.Git�1 is the dynamic feedback effect of accumulated patent experience and
knowledge. The variables gi and tt denote the university-specific fixed effect and time-
specific effect, respectively.

Although Git�1 can be used to parameterise unobservable heterogeneity, Blundell
et al. (1995) also proposed using search activities in a pre-sample to parameterise
unobservable heterogeneity. Following Blundell et al. (1995), we consider a fully
observed latent variable, i.e. Sit, which represents a university’s patent search activities
as a function of previous search activities, university characteristics, and unobservable
variables as follows:

Sit ¼ c1Sit�1 þ c2xit�1 þ gi þ eit; ð6Þ
where gi is the university-specific fixed effect, and eit is the disturbance. Because a uni-
versity that received more funding and developed more patents during a previous per-
iod is more likely to receive funding, we assume that the university characteristics,
which are represented by xit, follow the following feedback mechanism:

xit ¼ u1xit�1 þ u2Sit�1 þ tit: ð7Þ
Equation (7) can be rewritten as follows:

xit ¼ ð1� u1LÞ�1ðu2Sit�1 þ titÞ; ð8Þ
where L is the lag operator. Substituting xit into equation (6) and assuming stationar-
ity of Sit, we obtain the following:

ð1� c1LÞð1� u1LÞSit ¼ c2u2L
2Sit þ c2Lvit þ gi þ eit: ð9Þ

Taking expectations over time t and assuming that EðeitÞ ¼ EðvitÞ ¼ 0, we find that
search activities are proportional to the unobservable university-specific fixed effect as
follows:

Si ¼ gi½ð1� c1Þð1� u1Þ � c2u2��1; ð10Þ
where Si¼EðSitÞ. Although the observed count of patent Yit is not search activity Sit,
it could be a reasonable proxy for Sit over a long enough time span (Foltz et al.,
2003). We also use pre-sample received patents (BEFOREi) as another proxy for the
university unobservable heterogeneity and estimate the following model:

X
0
itb ¼ @0 þ @1invest Tit�sþ@2per 863it�s þ @3per 973it�s þ @4per GMSPit�s

þ@5per phdit�s þ @6per masterit�sþ@7nationali þ @8BEFOREi þ gi þ tt
ð11Þ

All the variables are the same as those in equation (5), except BEFOREi is used
instead of Git�1. The variable BEFOREi represents the number of patents applied for
or received before the start of the GM special programme in 2008, and @ represents
the parameters to be estimated.

2.3. Poisson model vs. negative binomial model

Poisson and negative binomial models are commonly used to model the number of
patents or published articles for firms or universities (Hausman et al., 1984; Foltz
et al., 2007). It is often assumed that the number of patents or published articles fol-
lows a Poisson distribution with a conditional mean (uit) depending upon a set of
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regressors (xit) and corresponding parameters (Rose et al., 2006). Following Wool-
dridge (2003), the Poisson probability distribution for the research output (Yit) equal
to yit and conditional on xit can be expressed as follows:

Pr Yit ¼ yitx007C; xitð Þ ¼ e� exp xitbð Þ½expðxitbÞ�yit
yit!

; yit ¼ 0; 1; 2. . .

where xit is a vector of potential research input for university i in year t, and b is a vec-
tor of the parameters to be estimated.

One limitation of the Poisson regression is that the variance of the data is restricted
to be equal to the mean as follows: Eðyitx007C; xitÞ ¼ Varðyitx007C; xitÞ ¼ uit. In
many empirical applications of the model, it is not uncommon to find that the vari-
ance of yit is larger than the mean (Wedderburn, 1974; Cox, 1983; Dean and Lawless,
1989; Lambert, 1992; Gurmu and Trivedi, 1996), implying ‘overdispersion’ in the
data. Ignoring the extra variations would lead to the underestimation of the variance
of the estimated parameters (Miaou, 1994). To address this problem, we can relax the
variance assumption of the Poisson model and allow for an over-dispersion parameter
by using the negative binomial model (Rose et al., 2006). We code the variance of yit
as uuit instead, where φ ≥ 1 is an overdispersion parameter. We find evidence that the
variance is larger than the mean in our data, so we use a negative binomial model
rather than a Poisson model to address the overdispersion problem in our data.

The panel data allow us to control for university-specific effects. Following Foltz
et al. (2003) we also use a random effects formulation to control for the unobserved
university-specific effect. The random effects model is selected rather than the fixed
effects model because a substantial proportion of the variables, such as the percentage
of all types of funding and the proportion of faculty with a PhD, are slow moving in
our sample. The use of a fixed effects model, which mainly focuses on year-by-year
variations, could produce noisy results rather than the desired information.

2.4. Data sources

The data used in this paper comprise two parts. The first part includes survey data col-
lected in 2010 by mail and followed up with telephone calls. We surveyed all 200 col-
leges or research institutes that engaged in the National GM Variety Development
Special Programme in China. The colleges or research institutes were selected on the
basis of their involvement in the GMSP because this programme is the largest agricul-
tural biotechnology R&D programme in China (Hu et al., 2013). To implement the
survey, we sent the survey forms to and worked closely with the research management
division of each college or institute. In each institution, the division head was respon-
sible for completing and returning the survey forms. All participants were informed
that all information would be used only for the research purpose and that in the final
dataset, their affiliations and names would be eliminated, with their survey informa-
tion identified only with the aid of a confidential identifier code. As a result of this
anonymity and the support of the Ministry of Agriculture, our survey response rate
was 100%. To ensure high-quality data, phone calls were made to the division head of
each university or institute to clarify missing or inconsistent data. The survey data
represent a unique panel dataset of multiple inputs and outputs from 200 institutes
among 28 of 31 provinces in China covering the 2005–2010 period. The collected data
included detailed information related to the research capacity, including the number
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of agricultural researchers separated by different education degrees and positional
titles, all types of research funding and the number of published articles from 2005–
2010.3

The second part included all agricultural biotechnology patent data collected from
the Derwent Innovations Index from 1985–2013. To avoid confounding the effects of
different lengths between application and acceptance, we used the date of the applica-
tion rather than the date of the award as the date of a patent. One problem with the
two data parts is that in our survey data, we treated a college as a research institute,
whereas the patent data from the Derwent Innovations are collected within a univer-
sity. We could hardly separate the patent data of a university into several colleges;
therefore, we merged the survey data of the colleges if they were from the same univer-
sity. For instance, in the Chinese Agricultural University, the survey data of the Col-
lege of Biological Sciences and the College of Agronomy and Biotechnology were
merged into the Chinese Agricultural University. After adjusting our data, we finally
obtain 160 universities or research institutes (hereafter, university) in our sample
dataset.

3. Descriptive Analysis and Summary Statistics

3.1. Inputs: Human capital and capital

Table 1 shows the number and percentage of agbiotech researchers with different
levels of education across 160 universities engaged in the GMSP. Although the total
number of agricultural researchers decreased during the 2005–2010 period (Huang
et al., 2012), the total number of agbiotech researchers increased from 10,239 in 2005
to 13,626 in 2010. It is worth noting that the credentials of the researchers in China’s
agbiotech research sector substantially improved. The share of researchers with a
master’s degree remained almost the same, whereas the share of researchers with a
maximum of a bachelor’s degree continued to decrease. In contrast, the percentage of
agbiotech researchers with a PhD degree, which is a measure of the high quality of
human capital input, increased from 33.4% in 2005 to 44.6% in 2010, suggesting that
the quality of China’s agbiotech research base substantially improved.

The agbiotech research fund sources can be divided into the following four cate-
gories: the 863 Programme, the 973 Programme, the GMSP and other sources, includ-
ing funds from international programmes and the National Natural Science
Foundation of China. As shown in Table 2, the total amount of agbiotech funds con-
tinued to increase from 2005 to 2010, except for the funds from the 863 Programme,
which increased from 2005 to 2008 and then slightly decreased. The proportion of
funds from both the 863 and 973 programmes continued to decrease from 2005,
whereas that from the GMSP continued to increase with a high growth rate since its
establishment in 2008. This is mainly because the arrangement of funding changed in
2008, after which important research projects were funded by the GM special
programme.

3The research funding data were deflated using 2010 as the base year. The survey data from

2010 included data only until the end of August. We assume that the funding received and the
articles published by a university are evenly distributed throughout the year; therefore, we mul-
tiplied the funding and article data from 2010 by a factor of 1.5. This action did not measurably

change the results compared with those obtained using the unchanged data.
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3.2. Outputs: Patents and article production

As mentioned above, university knowledge outputs in agbiotech mainly include
patents and publications in scientific journals. Patents and articles are important com-
ponents of intellectual property and important measures of innovative activities. In
this section, we describe the development of patents and articles to determine R&D in
the agbiotech field in China.

3.2.1. Agbiotech patents of all universities engaged in the GMSP from 1986 to 2013
Figure 1 presents the number of agbiotech patents of all universities in our sample
from 1986 to 2013. The trends of the patents that were applied for and authorised pre-
sented in Figure 1 indicate that there has been a rapid increase in Chinese agbiotech
patent production. Across all 160 universities, the first agbiotech patent was applied
for in 1986, and the first agbiotech patent was authorised in 1991. During the 1986–
2013 period, a total of 138 universities applied for 10,060 agbiotech patents, and 132
universities received 5,718 agbiotech patents. The vast majority of patenting activity
occurred between 2006 and 2013, and during this period, 86% of the patents were

Table 2

Funds for agbiotech research from different sources (2005–2010)

Agbiotech funds

(million)

Proportion of funding sources

(%)

Total 863 973 GMSP Other 863 973 GMSP Other

2005 916 235 223 0 458 25.7 24.3 0.0 50.0

2006 1,044 237 239 0 569 22.7 22.9 0.0 54.4
2007 1,308 311 279 0 718 23.8 21.3 0.0 54.9
2008 2,270 418 335 780 737 18.4 14.7 34.4 32.5

2009 2,932 398 452 1,306 775 13.6 15.4 44.6 26.4
2010 (Jan–Aug) 3,278 326 441 1,793 718 9.9 13.4 54.7 21.9
2010 (estimated) 4,916 489 661 2,689 1,077 9.9 13.4 54.7 21.9

Note: The research funding data were deflated using 2010 as the base year.

Data source: Authors’ survey.

Table 1

Number and percentage of agbiotech researchers with different levels of education

Total number PhD degree (%)
Master’s
degree (%)

Bachelor’s
degree (%) Other (%)

2005 10,239 33.4 27.1 26.1 13.4
2006 10,717 36.0 27.3 25.0 11.8

2007 11,378 38.0 27.8 22.9 11.2
2008 12,161 41.1 28.0 21.1 9.8
2009 13,052 43.4 27.9 19.6 9.1

2010 13,626 44.6 27.7 19.2 8.4

Data source: Authors’ survey.
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applied for, and 90% of the patents were granted. Before the commercialisation of
transgenic crops in 1996, there were only 11 agbiotech patents across all these univer-
sities. However, after the commercialisation of transgenic crops, the number of autho-
rised agbiotech patents increased from 4 in 1996 to 926 in 2013, with an average
annual growth rate of up to 37.7%.

The top twenty universities, ranked by the number of accepted agbiotech patents
since the start of the GMSP programme from 2008 to 2013, are shown in Table 3.
Overall, the patent holders are moderately concentrated among 160 universities. The
top twenty universities accounted for 56% of the total over the period 2008–2016
(Table 3). During this period, the top five holders accounted for 25% of the total
number of patents, while the top ten patent holders accounted for 37%. In the pre-
sample data, these twenty universities had 62% (the top twenty universities had 72%)
of the total number of patents. The decreasing percentage in the top twenty holders
indicates that competition in Chinese agbiotech R&D has becoming increasingly
fierce.

The top two producers before 2008 remained in the top three after the start of the
GMSP, and fifteen of the top twenty producers remained in the top twenty, showing
some persistence between the two time periods. However, Sichuan Agricultural
University presents a striking contrast from having zero patents during the pre-sam-
ple period to being the eleventh producer in patent production during the latest
period. The persistence in agbiotech patent production suggests that innovation his-
tories and knowledge accumulation are important factors for the production of
patents, justifying the use of Git�1 and BEFOREi to control for unobserved univer-
sity heterogeneity.

Comparing patent production between the national universities and non-national
universities during 1991–2007 (Table S1, in the online Appendix). Fifty-five national
universities had an acceptance rate per university per year of 2.6, against 1.0 for the
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Fig. 1. Number of agbiotech patents across 160 universities from 1986 to 2013
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non-nationals. Separating the entire period into several different periods (we set the
time points as 1996 and 2008). Since the commercialisation of transgenic crops, which
started in 1996 and 2007, the average annual rates were 1.1 vs. 0.2, respectively, which
dramatically increased to 8.0 vs. 3.3 between 2008, the GMSP start, and 2013. This
suggests that national universities with a strong research capacity also generate more
agbiotech patents, and that the variable national could have a positive effect on agbio-
tech patent production.

3.2.2. Number of articles published by 160 universities from 2005 to 2010
The number of agricultural and agbiotech articles published by agricultural research-
ers at 160 universities showed a steady growth trend during the 2005–2010 period
(Table S2 in the online Appendix). From 2005 to 2009, the average annual growth
rate of agricultural articles was 7.3%, while that for agbiotech articles was even higher
at 9.1%. The structure of agricultural articles shows that the proportion of agbiotech
articles increased from 34.7% in 2005 to 37.3% in 2010. The above analysis suggests
that China’s agricultural research gradually shifted towards transgenic biotechnology.

Table 3

University rankings of agbiotech patent production from 1986 to 2013

University
Rank
08–13

Patents
08–13

Pre-sample
rank 86–07

Pre-sample
patents 86–07

Huazhong Agricultural University 1 297 2 68
China Agricultural University 2 258 4 57
Zhejiang University 3 255 1 77

Nanjing Agricultural University 4 213 14 26
Shanghai Jiaotong University 5 155 9 36
Institute of Crop Sciences, CAAS 6 144 20 14

Northwest A&F University 7 117 27 8
Jiangsu Province Academy of
Agricultural Sciences

8 116 25 11

Institute of Botany, CAS 9 99 12 28
South China Agricultural University 10 97 21 14
Sichuan Agricultural University 11 96 NA 0
Fudan University 12 95 13 27

Sun Yat-sen University 13 94 3 59
Shandong University 14 93 16 19
Institute of Microbiology, CAS 15 92 7 39

Tsinghua University 16 86 5 45
Biotechnology Research Institute,
CAAS

17 86 15 26

Chinese Academy of Inspection and
Quarantine

18 85 29 7

Southwest University 19 84 43 5
Shanghai Institutes for Biological

Sciences, CAS

20 80 6 41

Total of the above twenty universities 2,642 607
Total of the top twenty universities 2,642 708

Total of 160 universities 4,733 985

Data source: Patent data were retrieved from the Derwent Innovations Index.
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Based on the high quality of scientific research, the number of agricultural and agbio-
tech SCI articles presented an even faster growth rate, at 16.7% and 19.3% respec-
tively, suggesting that the agricultural research quality in China continued to
improve.

3.2.3. Summary statistics of the model variables
The variables used in the econometric analysis are summarised in Table 4. On aver-
age, the 160 universities applied for approximately 8 and received nearly 5 patents per
year from 2008 to 2013. In 2010, Zhejiang University applied for the most agbiotech
patents, 94. However, Huazhong Agricultural University received the most agbiotech
patents (59 patents) in 2012.

4. Results

4.1. Impact of changing the investment system on agbiotech research output – patent
applications

The results obtained from maximum likelihood estimations using a random effects
negative binomial model are shown in Table 5. The following three models were esti-
mated: (a) a base model without controlling for the pre-sample measurements of
heterogeneity and with no dynamic effects; (b) a model using beforei apply as a proxy
for the average past search activities (we used the number of patents applied for
before 2007), which measures a part of the individual unobservable heterogeneity and
to reflect the potential barriers to entry over time in agbiotech patent production
(Blundell et al., 1995; Foltz et al., 2003); and (c) a dynamic model using the continu-
ous dynamic patent effects, Git�1 apply, where columns (3)–(5) use different deprecia-
tion rates for patents that were previously applied for. In column (3), the depreciation
rate r is set at 30%, and in columns (4) and (5), the depreciation rate r equals 20%

Table 4

Summary statistics of the model variables

Variable Definition Mean SD Min Max

patent applyit Number of patents applied for 8.02 13.55 0 94
patent awardit Number of patents received 4.93 8.88 0 59
invest Tit�3 Total agbiotech funding (million yuan) 1.39 4.59 0 90.75

per 863it�3 Percent of funding from 863 0.19 0.29 0 1
per 973it�3 Percent of funding from 973 0.11 0.21 0 1
per GMSPit�3 Percent of funding from GMSP 0.22 0.35 0 1

per phdit�3 Percent of researchers with a PhD degree 0.39 0.27 0 1
per masterit�3 Percent of researchers with a master’s degree 0.29 0.16 0 0.87
national National university = 1; otherwise = 0 0.34 0.48 0 1
beforei apply Number of patents applied for before 2007 14.75 30.19 0 214

beforei award Number of patents received before 2007 6.16 12.98 0 77
paper Tit Number of agbiotech articles 100.85 215.15 0 2,670
paper SCIit Number of agbiotech SCI articles 21.98 59.74 0 823

Note: The total number of observations is 960. Number of universities = 160. Funding is mea-
sured in million yuan.
Data source: Authors’ survey.
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and 10%, respectively. All models produce estimates of dispersion, which are signifi-
cantly different from zero. Additionally, the likelihood ratio test of all models is signif-
icant at the 1% significance level, suggesting that the random effects model is more
appropriate than a pooled data model.

The signs of the coefficients in all models are generally as we expected. The results
suggest that the investments of the 863 Programme and GMSP significantly influence
the output of patents compared with other investments (Hypothesis 1). In addition, in
all models shown in Table 5, the coefficient of per GMSPit�3 is larger than the corre-
sponding coefficient of per 863it�3, which supports our hypothesis Hypothesis 2:
research investment in China is becoming more efficient. This may be because com-
pared with the 863 and 973 programmes, the GMSP lasts for a longer period; thus,
scientists do not have to waste time applying for programmes and can focus on their
research. The coefficient of per 973it�3 in all models is not significant, which may be
because the 973 Programme only aims at key basic R&D, with the assessment objec-
tive of research papers (Hypothesis 1).

As shown in column (1), the 10% increase in the proportion of researchers with
PhD and master’s degrees is associated with an increase in the expected number of

Table 5

Random effects negative binomial estimate of agbiotech research output: patent application

(1) (2) (3) (4) (5)

Comparison
model

Pre-sample
dynamic effects

Continuous dynamic effects

r = 30% r = 20% r = 10%

invest Tit�3 0.006 0.002 –0.004 –0.003 –0.002
(0.004) (0.003) (0.005) (0.005) (0.005)

per 863it�3 0.335*** 0.290*** 0.336*** 0.341*** 0.345***
(0.117) (0.111) (0.117) (0.117) (0.117)

per 973it�3 0.177 0.137 0.180 0.187 0.193
(0.143) (0.133) (0.144) (0.144) (0.144)

per GMSPit�3 0.468*** 0.373*** 0.361*** 0.369*** 0.382***
(0.082) (0.082) (0.088) (0.088) (0.087)

per phdit�3 2.513*** 2.106*** 2.253*** 2.275*** 2.308***

(0.325) (0.309) (0.327) (0.327) (0.328)
per masterit�3 1.441*** 1.162*** 1.421*** 1.439*** 1.457***

(0.438) (0.387) (0.428) (0.429) (0.430)

national 0.501*** 0.167 0.472*** 0.472*** 0.470***
(0.181) (0.173) (0.175) (0.175) (0.176)

beforei apply 0.020***
(0.003)

Git�1 apply 0.005*** 0.004*** 0.003***
(0.001) (0.001) (0.001)

Constant –0.564** –0.597** –0.548** –0.554** –0.559**
(0.269) (0.244) (0.265) (0.266) (0.266)

Observations 960 960 960 960 960
Number of groups 160 160 160 160 160

Note: Standard errors are shown in parentheses, ***, **, and * indicate statistically significant

differences at the 1%, 5% and 10% levels, respectively. Research funding data were converted
into constant 2010 yuan using the consumer price index.
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patent applications by 25.1% and 14.4%, respectively, suggesting that the quality of
the inputs is more important than the absolute quantity (Hypothesis 3). As mentioned
above, from 2005 to 2010, the percentage of researchers with a doctoral degree
increased by 11.2% (from 33.4% in 2005 to 44.6% in 2010), and that of researchers
with a master’s degree increased by 0.6% (from 27.1% in 2005 to 27.7% in 2010),
implying that the improvement in the quality of researchers accounted for 29% (29%
=2.513*11.2%+1.441*0.6%) of the patent boom in China. Moreover, compared with
the coefficients of investment, a 10% increase in the proportion of funding from the
863 Programme and GMSP only increases the expected number of patent applications
by 3.35% and 4.68%, respectively. Because the proportion of GMSP funding
increased by 54.7% (from 0% in 2005 to 54.7% in 2010) and the proportion of 863
funding decreased by 15.8% (from 25.7% in 2005 to 9.9% in 2010) during the 2005–
2010 period, the contribution of the programme objective change to the patent boom
in China was approximately 20% (20%=0.468*54.7%+0.335*(–15.8%)), which is
lower than the contribution of human research capacity improvements. This result
also offers support for Hypothesis 4: the most important factor for output in agbio-
tech is human research capacity improvements rather than the investment amount.

In column (2), we use beforei apply to determine whether there are barriers to entry
over time in agbiotech patent production. Compared with the findings of Foltz et al.
(2003), we find that there are entry barriers in agbiotech patent production. The mea-
sure of the search levels, beforei apply, is significant, suggesting that the agbiotech
patent production levels prior to 2007 were important in explaining patent production
during the sample period (2008–2013). Except for the coefficient shown in column (2),
which may be due to the correlation with the variable beforei apply, the coefficient of
national is significant in the remaining models, suggesting that a university with a
strong research capacity will definitely have more agbiotech patents.

In columns (3)–(5), we use the dynamic effects, Git�1 apply, to proxy the knowledge
accumulation and patenting culture effects in the patenting process. Consistent with
the findings reported by Foltz et al. (2003) and Blundell et al. (1995), our results also
suggest that path dependence occurs in innovation activities. The coefficients of the
dynamic effects in all models are significant at the 1% level, thus providing evidence
of persistence in agbiotech patent production and suggesting that patent experience
helps scholars produce more patents (Hypothesis 5). It is also worth noting that as the
depreciation rate r decreases from 30% to 10% (columns (3)–(5)), the weight of past
knowledge increases and the coefficient of the dynamic effects decreases, providing
evidence that as time passes, the contribution of previous experience and knowledge
becomes less valuable.4

4One concern is that researchers may only make patent applications due to the assessment of a
research project; therefore, using the number of patent applications may not be a good measure
of research output and, thus, may bias the results. The number of patents awarded can be used

as a measure of real research outputs with high quality. We also use the number of patents
awarded as the dependent variable instead of the number of patents applied for to do the
robustness check. The results are quite similar except that the coefficients of investment and

human research capacity become smaller, but the coefficient of knowledge accumulation
becomes larger. This finding suggests that there are even stronger barriers to entry and stronger
path dependence for research outputs with higher quality. For more details, please see the sup-

plementary materials in the online Appendix.
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4.2. Impact of a changing investment system on agbiotech research output: number of
published articles

Using the number of articles published as a measure of agbiotech research output pro-
duces the results shown in Table 6. Our analysis of patent production above suggests
that the addition of a dynamic effect does not measurably influence the results. Using
article production as the output measure does not allow a dynamic feedback effect
because we lack information on articles published prior to 2005.5 In column (1), we
use all published agbiotech articles, including those published in Chinese and English,
as a measure of agbiotech research output. In column (2), we only use articles indexed
by the SCI/SSCI to consider the quality of the articles published.

In column (1) of Table 6, the variables with a positive and significant effect on
agbiotech article production include the total research budget, funding from the 863
Programme, funding from the 973 Programme, the GMSP, and the proportion of
researchers with a doctoral degree. In general, the results suggest that the influence of
the GMSP is larger than that of the 863 and 973 programmes (Hypothesis 2). The
quality of the inputs appears to be more important than the absolute quantity
(Hypothesis 3).

In column (2) of Table 6, when we use higher quality articles as a measure of agbio-
tech research output, the coefficient of the 863 Programme becomes insignificant,
which may be because the 863 Programme only aimed to conduct high technology
R&D, while the assessment objectives of the 863 Programme are patents and new
technologies (Hypothesis 1). The coefficients of per masterit�2 are not significant in
either model. The coefficients of national are also not significant in either model, sug-
gesting that after controlling for research funding and human research capacity, sig-
nificant differences are not observed between national research institutes and
provincial research institutes with respect to their contribution to article production.
The contribution of the programme objective change is 20% (20%
=0.418*54.7%+0.224*(13.4%–24.3%), which is much lower than that of human
research capacity improvements (32%=2.861*11.2%), thus providing evidence that
the most important factor for output in agbiotech in China is the human research
capacity rather than the investment amount (Hypothesis 4).

5. Conclusions

The R&D programme objective in China has changed considerably since 2006: R&D
investments were initially dominated by the 863 and 973 programmes and then
became dominated by the GMSP (as part of the more general STMP). In this paper,
we use R&D in China’s agbiotech research as an example to estimate whether the
change in the programme objective has increased research productivity in China.
Using a unique panel dataset based on 160 universities that participated in the GMSP
programme during the 2005–2010 period, we model the knowledge production pro-
cess by estimating several random effects negative binomial models. We find strong
evidence that the investment reform greatly contributes to knowledge output produc-
tion in China’s agbiotech sector (Hypothesis 2). We also find that the input quality is

5Millions of papers have been published by the 160 universities over time, and it is difficult to
determine whether these papers were published by researchers engaged in the GMSP

programme.
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more important than the absolute quantity (Hypothesis 3) and that the objectives of
different programmes exert various effects, suggesting that different assessment mech-
anisms have a strong impact on output production (Hypothesis 1) and that the
improvement in human research capacity is crucial for the output of patents in China
(Hypothesis 4). We find that past knowledge accumulation helps produce more
patents and that there is evidence of entry barriers in China’s agbiotech patent pro-
duction (Hypothesis 5). We also find evidence that improvement in the quality of
human capital inputs is a key factor behind China’s patent explosion.

The productivity improvement in China’s R&D sector may be partially due to the
newly designed research funding system and the scale effect of funding, which avoids

Table 6

Random effects negative binomial estimate of agbiotech research output: number of articles
publisheda

(1) (2)
paper Tit paper SCIit

invest Tit�2 0.015*** 0.012**

(0.005) (0.006)
per 863it�2 0.150** 0.054

(0.066) (0.095)

per 973it�2 0.168** 0.224**
(0.082) (0.106)

per GMSPit�2 0.423*** 0.418***
(0.090) (0.146)

per phdit�2 1.129*** 2.861***
(0.241) (0.366)

per masterit�2 0.124 0.037

(0.315) (0.489)
national 0.138 0.073

(0.168) (0.218)

Constant 2.049*** 0.991***
(0.192) (0.291)

Observations 640 640
Number of groups 160 160

Note: Standard errors are shown in parentheses; ***, **, and * indicate statistically significant
differences at the 1%, 5% and 10% levels, respectively. Research funding data were converted
into constant 2010 yuan using the consumer price index.
aThere might be substitute effects between patents and research papers for individual scientists.
We drew several scatter diagrams of patents, including patents applied for and patents awarded,
and research papers, including all research papers and SCI/SSCI research papers, and the
results show that the relationship between patents and research papers is complementary rather

than substitutional, which may be due to the dataset used, which includes data on the whole
university rather than individuals. Within a particular university, some research teams focus on
basic research, while other teams focus on applied research; thus, our data show no substitute

effect between patents and research papers. The complementary effects between patents and
research papers may be due to the research capacity of the university. In a better university, fac-
ulties engaged in basic research or applied research could have a stronger capacity than those in

an inferior university. The effect of the research capacity of a university could be regarded as an
unobserved fixed effect and can be controlled for by using panel data and a random effects
model.
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the problem of low-level repetitive research. Another reason may be that compared
with the 863 and 973 Programmes, the funding of the GMSP is consistent and coher-
ent. The funding of the GMSP always lasts for a longer period; thus, scientists do not
have to waste time applying for new projects. The newly designed research funding
system, the scale effect of funding and the consistency of funding could be the key fac-
tors explaining the improved productivity in China’s R&D sector. We are pleased to
observe that the outputs are consistently generated as expected by the programmes.
Because the objective of the GMSP is to generate new varieties, we should set the
assessment mechanism as a product instead of a patent or published paper. From the
conclusions above, the continued training of a large number of scientists may be a
good method for increasing innovation in China.

Although productivity has considerably improved in China’s agbiotech sector, fur-
ther studies are still needed to examine whether this type of effect also exists in other
fields, such as the other 15 special programmes in the STMP. We should also notice
that the dropout mechanism of the new funding system, such as the GMSP, is very
weak (because these types of programmes always last for a long period). Some insti-
tutes may free riding after they participate in the programme. After a five-year period,
an existing institute is prioritised with respect to continued participation in these pro-
grammes, leaving fewer opportunities for those not in the programmes. Further stud-
ies should also focus on the long-term effects of these special programmes in the
GMSP or STMP.

Supporting Information

Additional supporting information may be found online in the Supporting Informa-
tion section at the end of the article.

Figure S1. Number of agbiotech patents in China from 1985 to 2013
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