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Recent studies have shown that climate change will impose severe challenges on agriculture with pro-
found implications. Although some hypothetical simulations have suggested that an optimal re-
arrangement of the growing season can substantially mitigate yield losses under future climate, no
causal estimate has been provided on quantifying the extent to which farmers are adapting through
growing-season adjustments. Using a novel microlevel data with detailed crop progress information
in China over 1993–2013, we show that both planting dates and growing season lengths significantly
respond to contemporaneous temperature and precipitation. Our estimates suggest that, for a median
site in our sample, the adaptive behavior in growing season adjustments can lead to a two to six days
earlier planting date and another three to six days shorter growing season by the end of this century.
These induced adjustments can avoid up to 9% of the crop damages caused by climate change. How-
ever, our empirical analysis does not find clear evidence of long-run response or accompanied input
adjustments, suggesting potential for developing policies and tools to further aid the adaptive process.
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Climate change threatens global food security
(Lobell et al. 2008; IPCC 2014). Recent studies
have shown that crop yields are substantially
decreased under high temperatures, and the
projected losses in crop production are huge
under future climate evenwith long-run adapta-
tion considered (e.g, Schlenker and Roberts
2009; Burke and Emerick 2016; Chen, Chen,
and Xu 2016; Gammans, Mérel, and Ortiz-
Bobea 2017; Chen and Gong 2021). This
climatic impact on agriculture can lead to pro-
found implications on societies, because it
brings further impacts and responses related to
health, human capital accumulation, migration,

and labor markets, among others, especially in
developing countries (e.g., Cattaneo and Peri
2016; Springmann et al. 2016; Garg, Jagnani,
and Taraz 2020; Huang et al. 2020).
Farmers may adapt to a changing climate

through adjusting the time they plant and har-
vest crops. Numerous hypothetical simulations
have suggested that optimal adjustments in
growing seasons would lead to substantial miti-
gation in yield losses under future climate (e.g.,
Ortiz-Bobea and Just 2013; Kawasaki and
Uchida 2016; Baum et al. 2020; Shew et al.
2020). However, these optimal rearrangements
may not necessarily occur in reality due to var-
ious constraints farmers may face in achieving
adaptation. Therefore, it is crucial to quantify
to what extent farmers have actually been
adapting through adjusting the growing seasons
of their crops according to realized climatic
conditions. The understanding of this behav-
ioral response helps contextualize the potential
yield benefits of growing season adjustments
and informs policy designs that can aid farmers’
adjustment process toward better adapting to
climate change.
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In this article, we measure farmers’ adaptive
behavior in growing season adjustments by pro-
viding the first causal estimate on how changes
in temperature and precipitation affect actual
growing seasons, based on a novel panel dataset
of nearly 800 agro-climatic monitoring sites in
China from 1993 to 2013. The dataset contains
detailed information on crop-specific planting
and maturity dates recorded at each site in each
year, providing a unique opportunity for explor-
ing the induced growing-season adjustments
with observational data.
Focusing on corn, we separately consider

two margins of the growing-season adjust-
ments: the planting date and the length of a
growing season. On planting dates, we explore
how temperature and precipitation realized
before the normal planting time of each site
affect the actual planting date in a year. On
growing-season lengths, we measure how tem-
perature and precipitation realized after the
actual planting date factor into the duration
of growing season in that year. In both cases,
we exploit exogenous year-to-year variation
in weather in the relevant time period to caus-
ally identify the effects of contemporaneous
weather. Although our empirical strategy is
still under a standard panel fixed effects frame-
work, the effective within-variation in weather
is measured over the relevant time period that
is location specific, in accordance with the fact
that the normal planting time of corn varies
across space.
Tracing out the weather effects as a flexible

function of time, we show that higher temper-
ature and precipitation realized in roughly one
month before the normal planting time have
the largest effect on advancing planting dates.
We find that, during the eight-week period
before normal planting time, a 1�C higher
weekly average temperature will result in a
1.21 days earlier planting date. This estimated
effect reflects that higher pre-planting temper-
atures loosen the constraint of heat deficit for
early planting. Additional results on regional
heterogeneity show that the temperature
effect is more substantive in the cooler north-
ern region, lending further support on this
mechanism. On precipitation, we find that a
1 cm increase in weekly cumulative precipita-
tion during the eight-week pre-planting period
is associated with a 1.68 days earlier planting,
but this effect is statistically weaker than the
temperature effect.
Our estimates on growing-season lengths

suggest that, both temperature and precipita-
tion realized after the planting date significantly

affect the length of a growing season. Higher
temperature and more precipitation during the
early course of the growing season shorten the
duration for crop growth. During the first
twelve weeks of the growing season, increasing
average temperature by 1�C would shorten the
growing season by about three days, and rising
weekly precipitation by 1 cm would lead to a
roughly one-and-half days shorter growing sea-
son. These effects tend to reverse in the later
course of the growing season as heat and water
stress interfere with the normal pace of late-
stage crop development.

We interpret our empirical estimates as con-
temporaneous short-run responses because
they are essentially identified through year-
to-year variation in weather. However, even
without further long-run adjustments, the
adaptive behavior reflected by these short-
run responses will still lead to meaningful
actions under future climate that partially mit-
igate the detrimental impacts of climate
change. We combine our empirical estimates
with a set of climate projection models to con-
textualize the implications of the induced
growing season adjustments. We show that,
all else equal, climate change will advance
the planting dates and shorten the growing
seasons for most of the sites in our sample.
Depending on the climate model, the median
site will shift forward its planting date by two
to six days and have a threee to six days
shorter growing season under RCP 8.5 by the
end of this century. We also show that
the induced earlier planting would not be pre-
vented by freezing threats, whereas the
shorter growing season avoids high tempera-
tures detrimental to yields.

We further evaluate the economic conse-
quences of these induced growing-season
adjustments through their implications on
corn yields. Specifically, we pair our empirical
results on planting dates and growing season
lengths with empirically identified yield-
response parameters to recover yield benefits
of the adjustments under future climate. The
results indicate that the induced adjustments
in planting dates and growing season lengths
on average mitigate potential yield losses by
3.3%–9.0% under RCP 8.5.

In addition, we estimate potential long-run
responses in growing-season adjustments
using a moving-average specification. We also
match our site-level data with a county-level
panel to explore if changes in fertilizer and
pesticide usage correlate with growing-season
adjustments. However, we do not find
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significant long-run response in addition to the
short-run response. There is also no indication
that input adjustments are simultaneously
involved with the induced adjustments in
planting dates and growing season lengths.
These results may suggest the existence of
important obstacles impeding farmers from
better utilizing their resources to further adapt
to climatic conditions through growing-season
adjustments.

This article makes important contributions
to the understanding of climatic impacts on
agricultural production by providing the first
causal estimate of temperature and precipita-
tion effects on growing-season adjustments.
In the literature, some studies have shown
large yield benefits of rearranging growing
seasons through hypothetical simulations
under projected future climate (e.g., Ortiz-
Bobea and Just 2013; Kawasaki and Uchida
2016; Baum et al. 2020; Shew et al. 2020).1

But these estimates correspond to a theoreti-
cally best scenario that does not necessarily
occur in reality due to potential constraints.
Previous phenological studies have also shown
correlations between warmer spring tempera-
ture and earlier planting time by relating
observed trends in historical data (e.g., Chen,
Hu, and Yu 2005; Menzel et al. 2006; Butler,
Mueller, and Huybers 2018; Zhu et al. 2018).
However, these findings are only suggestive
and do not represent a causal relationship,
because the trends are subject to potential spu-
rious correlation related to factors like techno-
logical progress over time. By exploiting rich
within-variation based on a novel microlevel
panel, we overcome the difficulty in causal
identification and make important progress
on quantifying the adaptive behavior in grow-
ing season adjustments.

The induced yield benefits reflected in our
analysis help gauge the potential bias in the
projected crop losses under future climate in
the literature.2 The contrast between our

results and the simulated results under an opti-
mal rearrangement also illustrates the diffi-
culty in flexibly adjusting growing seasons in
reality. The lack of evidence on long-run
response and accompanied input adjustments
further emphasizes this concern. Besides, with
a country focus on China, this article extends
the knowledge on how climate change would
affect agriculture in this vast and populous
country (Chen, Chen, and Xu 2016; Zhang,
Zhang, and Chen 2017; Chen and Gong 2021).
The findings in this article also build on the

emerging literature on measuring agricultural
adaptation to climate change. Specifically,
finding induced adjustments in growing sea-
sons complements previous studies that
explicitly measure other behavioral adapta-
tions, including crop choice, planting and har-
vesting decisions, double cropping, and input
adjustments (e.g., Seo and Mendelsohn 2008;
Kawasaki 2018; Cui 2020a, b; Arag�on, Oteiza,
and Rud 2021; Jagnani et al. 2021). The evi-
dence of a warming-induced shift in growing
season is also useful in explaining those docu-
mented acreage expansion and increased dou-
ble cropping that would not have occurred
without warming. In addition, the yield bene-
fits associated with growing season adjust-
ments provide a potential illustration of yield
adaptation manifested through the implicit
estimates under a unifying estimation frame-
work (Mérel and Gammans 2021).
The article is organized as follows. The next

section introduces data used and some facts on
agricultural production and climate in China.
The section of estimation and results elaborates
the empirical strategy for identifying how
weather affects planting dates and growing-
season lengths, and discusses the empirical
estimates. Building on these estimates, the
section on yield implications evaluates the yield
benefits of induced growing-season adjustments
through a set of simulations under future cli-
mate. Following that, two more sections further
explore potential long-run responses and input
adjustments, respectively. The section on
regional heterogeneity examines heterogeneous
responses in the induced adjustments of planting
dates and growing season lengths. The last
section concludes.

Data

We merge site-level crop progress data with
station-based weather data all over China for

1For instance, based on US data, Ortiz-Bobea and Just (2013)
show that a two-week earlier planting of corn could result in a sig-
nificant reduction in warming-induced yield damages up to 70%
under a 5�F uniform warming.

2When measuring climatic impacts on agricultural production,
the growing season of a crop is typically assumed fixed over time
in the empirical literature using an econometric approach. In this
literature, researchers normally pick a fixed time window that
encompasses the typical growing season to fully capture weather
fluctuations. For example, Schlenker and Roberts (2009) and
Burke and Emerick (2016) use March–August and April–
September for U.S. corn, respectively. Chen, Chen, and Xu
(2016) consider differentiated growing seasons for different types
of corn in China, but the growing season is unchanged over time
for each specific corn type.
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conducting the main analysis. The spatial dis-
tribution of crop sites and weather stations
are presented in appendix figure A1, and we
discuss more details of these data and other
supplementary data as follows.

Crop Progress Data

We utilize data collected at agro-climatic mon-
itoring sites to recover detailed information on
actual growing seasons specific to different
locations and crops in China. The government
started to extend a network of these sites
countrywide since early 1990s. The purpose
of establishing this network is to monitor crop
progress, evaluate yield risks, and forecast
production in major agricultural areas over
the country. Following a protocol, site loca-
tions are determined so that a site is represen-
tative of its regional climate niche. Specific
parcels of land to be monitored are chosen in
a way such that crops growing on these parcels
represent regional cropping activities. The
experts and staffs in this network are only
involved in monitoring crop conditions, and
the parcels being monitored are still managed
by ordinary farmers. For each crop monitored,
the site keeps tracks of all critical stages of its
growth. Experts at the site determine the start-
ing date of each stage for each crop based on
on-site observations of crop conditions, fol-
lowing criteria in a technical manual made by
agronomists (CMA 1993).
The data we use contain detailed site-level

records of all the 778 sites over 1993–2013,
stored in the data archive of the National
Meteorological Information Center of China.
We focus on corn in this study, considering
that corn is one of the most important crops
in China, and it is shown to be sensitive to
changes in climatic factors (Schlenker and
Roberts 2009; Chen, Chen, and Xu 2016).
Among the 778 sites, 259 sites have planted
corn for at least three years in the sample
period. In our corn data, all sites only plant
corn once in a year. We acknowledge that
some places in southern China (e.g., Hainan
province) are able to plant corn twice a year.
However, this double-corn phenomenon is
relatively rare because the heat accumulation
is typically insufficient for feeding two consec-
utive corn growing seasons in a single year in
most places in China, and our analysis does
not cover this special case.
The planting time of corn varies across

space. This time can be in as early as February

and as late as June. We show cross-sectional
variation in the normal planting time observed
in our data in appendix figure A2. The last
crop stage recorded in the corn data is crop
maturity. Because our data do not include dou-
ble corn, we use the number of days in
between planting and crop maturity in a year
to define the length of growing season at each
site. The typical length of corn growing season
also features cross-sectional variation in our
data, as shown in appendix figure A3.

Additional Agricultural Data

In addition to crop progress information, we
supplement data on the division of agricultural
regions for exploring regional heterogeneity.
A panel led by experts from multiple govern-
mental agencies, including theministries of agri-
culture, land and resources, environmental
protection, and water resources, has enacted a
zonal classification for agricultural development
in China.3 As shown in appendix figure A1, the
entire mainland China is categorized into seven
different zones based on agriculture-related
environmental endowments (climate condition,
soil type, water balance, etc.). The vast majority
of the corn-planted sites in our sample is located
in the following five zones: Northeast, North-
west, Huang-huai-hai, Southwest, and Yangtze
River Delta.4 Among the five zones, most of
the corn is planted in the Northeast and the
Northwest, followed by the Huang-huai-hai
and the Southwest. The Yangtze River Delta,
as a major rice-planting region, maintains a rel-
atively modest share in corn planting.

We also assemble a county-level panel of
input usage and cropland acreage over 2001–
2015 based on county-level agricultural statis-
tics obtained from the Ministry of Agriculture
and Rural Affairs of China and Chinese Acad-
emy of Agricultural Sciences. The input data
contain information on the total quantities of
fertilizer and pesticide application (compound
equivalent) at county-by-year level. We pair
these data with the total amount of harvested
acreage to obtain annual per-hectare usage of
fertilizer and pesticide at the county level.

3The official document is titled Sustainable Development Plan
for China’s Agriculture (2015–2030), released in May 2015. The
document can be retrieved from: http://www.gov.cn/xinwen/2015-
05/28/content_2869902.htm.

4Only one site is located in the South, and another one is located
in the Tibetan. In our empirical analysis on regional heterogeneity,
these two sites are categorized in their nearest neighboring zones:
the Yangtze River Delta, and the Southwest, respectively.
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Weather and Climate Data

We obtain historical daily weather information
from the China Meteorological Data Service
Center. The data contain daily records of max-
imum andminimum temperatures and precipi-
tation at 699 nationally certified weather
stations since 1981. We spatially interpolate
weather data to agro-climatic monitoring sites
using inverse-distance weighting with a radius
of 200 km. This strategy has proven to be effec-
tive and robust in various studies based on the
same source of weather data (e.g., Zhang,
Zhang, andChen 2017; Chen andGong 2021).5

Recent climatological studies document that
these regions have experienced considerable
warming over the past few decades (Lobell,
Schlenker, and Costa-Roberts 2011). The
trends observed in our weather data are consis-
tent with these findings. Based on available
information on site-specific weather over the
thirty years before the end of our sample period,
we obtain simple trend estimates in annual tem-
perature using the following regression:

Tempit ¼ αiþβi� tþ εit ,

where i and t represent site and year, respec-
tively; and Tempit indicates yearly average
temperature. In figure 1, we plot site-specific
trend coefficients βi for the five corn-planting
agricultural zones. The distributions are
mostly located on the right side of the zero-
lines, suggesting systematic warming trends
in all these regions.6 The median trend coeffi-
cient is about 0.04, which can be translated
into a 1�C warming in annual temperature
over twenty five years.

For future climate, we obtain projected end-
of-the-century temperature and precipitation
conditions from five different global climate
models (GCMs) derived from the Coupled
Model Intercomparison Project Phase
5 (CMIP5): GFDL-ESM2M, HadGEM2-ES,
IPSL-CM5A-LR, MIROC-ESM-CHEM, and
NorESM1-M. As we show in a later section,
climate model projections suggest that the
observed warming trends will persist, which
implies that crops will experience much more
extreme heat detrimental to yields under a

fixed growing season. These facts further high-
light the importance and relevance of under-
standing how growing-season adjustments
can mitigate the harmful impacts of climate
change.

Estimation and Results

Growing-season adjustments involve twomar-
gins: the time for planting and the duration of
crop growth. Relying on a site-level panel
fixed effects estimation, we separately identify
how temperature and precipitation induce
adjustments on these two margins.

Planting Date

A successful planting of corn requires neces-
sary conditions on temperature and soil mois-
ture to be met for initiating crop emergence
and development. If warmer temperature
and sufficient rainfall arrive earlier than usual,
the triggering conditions for planting cornmay
be satisfied earlier, possibly resulting in an ear-
lier planting date.
Weekly average specification. To uncover

the relationship empirically, we use the follow-
ing panel fixed effects estimation to causally
identify how weather realization prior to nor-
mal planting time affects the actual decision
of planting date:

ð1Þ PDit ¼
XJ

j¼0

βjTit,Mi�jþ
XJ

j¼0

γjPit,Mi�j

þhr tð Þþαiþ εit ,

where PDit represents the planting date in
year t recorded at site i. Specifically, the vari-
able is coded as the number of days since the
first day of year t, and therefore a smaller value
represents an earlier planting date. Tit,Mi�j is a
set of weekly average temperature variables at
the site-by-year level, measuring temperature
at the jth week prior to site iʼs normal planting
time.7 In practice, we define a site’s normal
planting time by referring to the median date
of its planting dates during 1993–2013. The
term Pit,Mi�j represents a set of weekly cumu-
lative precipitation variables defined in a fash-
ion similar to Tit,Mi�j. Specifically, we include

5Among all the stations, a non-negligible portion of the stations
co-locate with agro-climatic monitoring sites. Weather at these
sites almost solely rely on information collected by the co-located
weather stations, because the inverse-distance weighting strategy
assigns a weight approaching to one to the co-located station.

6We also conduct a similar analysis on precipitation, but we do
not find systematic trends, as shown in appendix figure A4.

7In the subscript of the variable,Mi� j denotes the jth week pre-
ceding Mi, the normal planting time of site i.
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weekly temperature and precipitation vari-
ables up to twelve weeks prior to each site’s
normal planting date to flexibly trace out
potentially heterogeneous effects over time.
The term hr(t) represents smooth regional
time trends, specified as province-level qua-
dratic trends of year. The term αi is the site
fixed effect, and εit represents the error term.
Under a standard panel fixed effects frame-

work, the identifying assumption is that, con-
trolling for differential time trends over
regions, two sites would have changed their
planting dates similarly had they experienced
the same change in weather before their nor-
mal planting time. The identification is
achieved through leveraging rich within-site
variation observed in our sample, as illustrated
in appendix figure A5. Because the error
structure in this type of analysis typically fea-
tures both spatial and temporal heteroskedas-
city and autocorrelation (Auffhammer et al.
2013), our statistical inference is based on a
two-way clustering strategy developed in
Cameron, Gelbach, and Miller (2011). Specif-
ically, the two-way clusters are sites and
province-by-year pairs, which allow for arbi-
trary correlations in the errors within the site
over years and across nearby sites in the
same year.
Figure 2 plots the estimates of temperature

and precipitation variables in equation (1).8

The pattern of the estimates suggests that
higher temperature and precipitation around

one month before normal planting dates have
the most significant effect on advancing actual
planting dates. For example, a 1�C higher
average temperature in the fourth week
before the normal planting date is associated
with an earlier planting of 0.24 days, and a
1 cm more precipitation in the same week is
associated with an early planting of 0.44 days.
These estimates are not negligible considering
that they only represent temperature and pre-
cipitation effects of one particular week.
Weather, especially temperature, usually fea-
tures high correlation between neighboring
weeks. If a specific week becomes warmer in
a year, it is very likely the neighboring weeks
also become warmer than usual, and the joint
effect will become much larger. For example,
suppose the third and the fifth weeks also
become 1�Cwarmer along with a 1�Cwarming
in the fourth week, the 1�C warming effect of
this three-week period would amount to a
0.66 days earlier planting date.

Alternative temperature measures. Different
measures of temperature may reflect differ-
ent aspects of the temperature effects, and
solely relying on mean temperatures may
potentially neglect other dimensions of the
temperature effects. For instance, the planting
decision could be more sensitive to cold tem-
peratures as their occurrence likely precludes
early planting. Therefore, we evaluate the sen-
sitivity of our results to alternative measures
of weekly temperature. Specifically, we con-
sider weekly averages of daily minimum and
maximum temperatures, as well as degree days
and the number of non-freezing days.

Panel A in appendix figure A7 plots the
estimates based on minimum and maximum
temperatures along with baseline estimates

Figure 1. Regional trends in annual temperature: 1984–2013.

Note: Each panel plots the distribution of site-specific trend coefficients of annual temperature from 1984–2013 in a specific region. The trend coefficients are
obtained by regressing annual temperature on site-specific time trends with site fixed effects.

8In our data, a small fraction of observations only report plant-
ing dates but do not disclose maturity dates. We conduct a robust-
ness check for the planting date regression by excluding these
observations. In appendix figure A6, we show that the results are
almost identical to those in figure 2.
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based on mean temperature. The three sets
of temperature estimates are highly consis-
tent and almost indistinguishable statistically.
We interpret this consistency as evidence
that weekly averages of daily mean tempera-
tures are sufficient for characterizing
farmers’ behavioral response in planting

date decision regarding pre-planting temper-
ature realizations.
Referring to agronomic knowledge on crop

planting, we use degree days above 10�C as
an alternative measure of temperature to eval-
uate the effects of temperature prior to normal
planting time. This measure of degree days

Figure 2. Effects of pre-planting weather on planting dates: Weekly averages.

Note: The dots represent the point estimates of temperature or precipitation effects in the corresponding weeks. The error bars represent 95% confidence
intervals based on two-way clustered standard errors. Temperature and precipitation are measured in degrees Celsius and centimeter, respectively. See
numerical results in appendix table A2.
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characterizes cumulative heat by summing
degrees by days above the threshold of 10�C
for the corresponding time period.9 The thresh-
old of 10�C comes directly from technical docu-
ments of corn seed-breeding in China, in which
10�C is regarded as a triggering threshold for
initiating corn growth (Cui 2007). Taking diur-
nal variation in daily temperature into account,
we conduct a sinusoidal interpolation between
daily maximum and minimum temperatures
for each day when constructing the degree days.
Besides, we also consider the number of days
with daily minimum temperature above 0�C as
another measure that emphasizes the role of
coldness in affecting planting dates.
PanelsBandCinappendixfigureA7plottem-

perature effects measured through degree days
and non-freezing days, respectively. Although
the magnitude of these estimates is not directly
comparablewith thatof thebaseline, thegeneral
patterns of the estimates are consistent. Higher
degree days and more non-freezing days, corre-
lated with higher weekly average temperature,
induce relatively earlier planting, especially
when it is close to the normal planting time.
Some studies in the recent literature have

adopted an out-of-sample prediction approach
to make variable selection (e.g., Schlenker and
Roberts 2009), but this approachmaynotbeper-
fectly suitable in our analysis. Conceptually, our
purpose in this research ismoreabout identifying
the causal effects than obtaining a model that
delivers the highest predictability. Besides, our
limited sample size keeps us from utilizing a
highly data-driven approach as the results are
likely very sensitive. Nevertheless, we examine
commonly used in-sample model selection cri-
teria and do not find any of the alternative tem-
peraturemeasures showing a significantly better
model fit over the baseline usingmean tempera-
ture, as shown in PanelA in appendix tableA1.
Additional robustness checks. We provide

additional robustness checks to address poten-
tial concerns on omitted variables. Previous

analysis has shown that weather variables
other than temperature and precipitation
may confound the identification of tempera-
ture and precipitation effects in the context
of estimating yield response (Zhang, Zhang,
and Chen 2017). To check if this issue also
occurs in our context, we perform a regression
of the baseline estimation controlling for
weekly averages of air pressure, humidity,
wind speed, and sunlight duration. In appen-
dix figure A8, we show that the identified tem-
perature and precipitation effects on planting
dates are not significantly affected by the
inclusion of other weather variables.

Another omitted variable concern is related
to socio-economic factors. Although we are
unable to control additional socio-economic
variables directly because our agricultural data
do not provide these information, we address
this issue by conducting an estimation with the
inclusion of province-by-year fixed effects. This
rich set of interactive fixed effects effectively
absorb any arbitrary socio-economic shock that
is specific to a region in a specific year. As we
show in appendix figure A8, the results are still
robust upon controlling for province-by-year
fixed effects.10 In the case that certain unob-
served site characteristics would lead to
response heterogeneity, our baseline estimates
should be viewed as an average effect of the
potentially heterogeneous responses.11

Four-week combined estimates. It should be
noted that the flexibility of estimating each
week’s impact comes with a cost of inefficiency
when coefficients of the neighboring weeks
are not substantially different. Therefore, we
use a specification that combines every four
weeks to more precisely estimate the tempera-
ture and precipitation effects, and we discuss
the magnitudes of the results in more details
based on this specification:

ð2Þ PDit ¼ β1Tit, Mi�1,Mi�4½ � þβ2Tit, Mi�5,Mi�8½ � þβ3Tit, Mi�9,Mi�12½ �

þγ1Pit, Mi�1,Mi�4½ � þ γ2Pit, Mi�5,Mi�8½ � þ γ3Pit, Mi�9,Mi�12½ � þhr tð Þþαiþ εit,

9For example, if the temperature is 11�C in each day of a week,
the degree days above 10�C for that week is 7�C.

10As noted in Fisher et al. (2012), the inclusion of region-by-year
fixed effects could absorb too much useful variation and poten-
tially amplify the impact of measurement errors.

11For instance, weather impacts may be different across irri-
gated versus non-irrigated sites. Unfortunately, we do not have
any information on irrigation at the site level to verify this
hypothesis.
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where Tit, Mi�τ1,Mi�τ2½ � and Pit, Mi�τ1,Mi�τ2½ � are
site i in year tʼs weekly average temperature
and weekly cumulative precipitation averaged
over the τ1-τ2 weeks before the site-specific
normal planting date, respectively. Other
terms follow the definition in equation (1),
and standard errors are two-way clustered by
sites and province-by-year pairs.

Column (1) in table 1 presents the estimated
effects of average temperature and precipita-
tion over every four weeks prior to median
planting dates. A 1�C higher average tempera-
ture in the first and second four-weeks before
median planting dates significantly brings for-
ward the actual planting dates by about 0.75
and 0.46 days, respectively. Combining these
effects suggests that if the average tempera-
ture during the eight weeks before median
planting dates increases by 1�C, corn will be
planted about 1.21 days earlier in that year.
This prompting temperature effect disappears
when warming occurs too early before plant-
ing. As shown in column (1), rising tempera-
ture during more than nine weeks before the
normal planting time does not significantly
affect actual planting time. The precipitation
estimates in column (1) suggest that rainfall
fluctuations only affect planting dates when
they occur during the 5th–8th weeks before
the normal planting time. Over this four-week
period, a 1 cm increase in weekly cumulative
rainfall is associated with about a 1.23 days
earlier planting time.

Column (2) in table 1 shows the results using
degree days above 10�C as temperature vari-
ables. The identified temperature effects are
in general qualitatively similar to those based
on average temperature measures, except that
the magnitude of the effects does not differ

much across the first and second four weeks.
During both the first–fourth and fifth–eighth
weeks prior to the median planting date, an
additional degree day is associated with
an advanced planting time of roughly
0.03 days. In column (3), we show that the pat-
tern of temperature effects based on non-
freezing days is more similar to that based on
average temperatures. Onemore non-freezing
day during the first–fourth pre-planting weeks
induces a 0.47 days earlier planting, and the
corresponding effect during the fifth–eighth
weeks shrinks to roughly 0.18 days. These
results suggest that the warming-induced
reduction in freezing days is important for
inducing earlier planting, and using average
temperature in the estimation has successfully
captured this response channel. The precipita-
tion effects presented in columns (2) and
(3) are generally similar to those in column
(1), despite that the statistical significance is
compromised.

Length of Growing Season

After planting, necessary heat accumulation
and water supply are essential for crop growth,
and crops become mature when they have
received and materialized sufficient heat and
water. An early reception of sufficient heat
and water supply may reduce the necessary
duration for crop growth, whereas water and
heat stress during crop development may also
affect the pace of crop growth.
Weekly average specification. We use the

following panel fixed effects estimation that
relates growing season lengths with weekly
weather realized after the exact planting dates:

Table 1. Effects of Pre-Planting Weather on Planting Dates

Average temp Degree days Non-freezing days
(1) (2) (3)

Temperature before normal planting date:
First–fourth weeks �0.750*** [0.180] �0.032*** [0.006] �0.471*** [0.065]
Fifth–eighth weeks �0.457** [0.170] �0.034** [0.011] �0.176* [0.075]
Ninth–twelfth weeks 0.009 [0.091] �0.007 [0.016] 0.008 [0.092]
Precipitation before normal planting date:
First–fourth weeks �0.446 [0.542] �0.465 [0.572] �0.033 [0.451]
Fifth–eighth weeks �1.229* [0.530] �1.342 [0.719] �0.641 [0.428]
Ninth–twelfth weeks 0.983 [1.669] 1.184 [1.543] 1.239 [1.089]
Observations 3,225 3,225 3,225

Note: Temperature variables are weekly average temperatures in column (1), degree days above 10�C in column (2), and the number of days with minimum
temperature above 0�C in column (3). All precipitation variables are weekly cumulative precipitations measured in centimeter. All regressions control for site
fixed effects and provincial quadratic time trends. Standard errors in brackets are two-way clustered at sites and province-by-year pairs.
Significance: *<0.05, **<0.01, ***<0.001.
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ð3Þ GSit ¼
XK

k¼1

βkTit,Ditþkþ
XK

k¼1

γkPit,Ditþk

þhr tð Þþαiþ εit,

whereGSit is the length of the growing season
at site i in year t. Because the last stage in a
crop cycle recorded by the site is cropmaturity,
we define the length of a growing season by
counting the number of days in between the
exact planting date and the maturity date for
each site in each year. Tit,Ditþk andPit,Ditþk rep-
resent temperature and precipitation in the k-
th week after the site- and year-specific actual
planting date Dit, and the parameters of βk
and γk trace out the effects of weekly tempera-
ture and precipitation over time starting from
the actual planting of the crop. Referring to
the observed lengths of growing seasons in
our sample, we estimate temperature and pre-
cipitation effects up to twenty fourweeks after
the actual planting date. The definition of
other terms follows those in equation (1), and
the standard errors are two-way clustered by
sites and by province-by-year pairs.12

We plot the weekly estimates of equation (3)
in figure 3. PanelA of figure 3 clearly shows that
a higher temperature in the first half of the
growing season strongly reduces the length of
growing season. In the first twelve weeks, a
1�C increase in the average temperature of
any week is associated with a length reduction
in the range of 0.1–0.5 days. This temperature
effect becomes close to zero during the next
six weeks and then inclines to reverse in the last
few weeks. In the last six weeks of the twenty
four-week time window, a 1�C increase in the
average temperature of any week is associated
with a lengthening of the growing season in
the range of 0.1–0.3 days. We interpret this
lengthening effect as suggestive evidence that
high temperature causes delay in crop growth

in the later course of the growing season, consis-
tent with some agronomic findings that high

temperatures slow down corn growth during
grain filling through reducing certain enzyme
rate (Keeling et al. 1994).13

Panel B of figure 3 shows a similar pattern
that the precipitation effect on shortening the
growing season is more pronounced in the ear-
lier course of the growing season and then
diminishes and even reverses in the later
course. The largest shortening effect occurs
in the first four weeks, during which a 1 cm
increase in weekly precipitation is associated
with a 0.2–0.3 days reduction in growing sea-
son. The precipitation coefficients become
modestly positive starting from the thirteenth
week after planting. We interpret these posi-
tive estimates as evidence that stress associ-
ated with water deficits accelerates crop
growth, consistent with agronomic knowledge.

Similar to the sensitivity checkswe have con-
ducted on the planting date regression, we also
estimate the weekly average regression on
growing season lengths using alternative tem-
perature measures. In addition to minimum
temperature, maximum temperature, and
degree days, we also construct a measure of
hot days based on the number of days with
daily maximum temperature above 30�C in
order to capture the effects of very high tem-
peratures. As we show in appendix figure
A10, the estimated patterns of temperature
effects are consistent across specifications
using different temperature measures.14

Besides, we also address potential omitted var-
iable concerns by conducting estimations with
additional weather variables and including
province-by-year fixed effects. The results are
still robust as shown in appendix figure A11.

Four-week combined estimates. For higher
efficiency and easier interpretation of the esti-
mation results, we also estimate the relation-
ship by grouping weekly temperature and
precipitation measures into every four weeks:

ð4Þ GSit ¼ β1Tit, Ditþ1,Ditþ4½ � þβ2Tit, Ditþ5,Ditþ8½ � þβ3Tit, Ditþ9,Ditþ12½ �

þγ1Pit, Ditþ1,Ditþ4½ � þ γ2Pit, Ditþ5,Ditþ8½ � þ γ3Pit, Ditþ9,Ditþ12½ � þhr tð Þþαiþ εit ,

12We show rich within-site variation in growing-season lengths
and post-planting weather in appendix figure A9.

13We note that some agronomic studies have also discussed the
potential of heat and water stress accelerating crop growth. Our
empirical finding is slightly different from this understanding,
and we only find the accelerating effect to be associated with water
stress in our case.

14Panel B in appendix table A1 suggests that the alternative
temperature measures have no significant advantage over the
mean temperature in terms of in-sample model fit.
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where Tit, Ditþτ1,Ditþτ2½ � and Pit, Ditþτ1,Ditþτ2½ � are
weekly average temperatures and weekly
cumulative precipitations averaged over the
τ1-τ2 weeks after the exact planting date at site
i in year t, respectively. Other terms are defined
in the same way as in equation (3), and stan-
dard errors are also two-way clustered.

Table 2 presents the estimation results.
Along with baseline estimates in column (1),

we also provide estimates based on degree
days and hot days in columns (2) and (3).
Higher temperatures during the first twelve
weeks are shown to significantly reduce the
length of growing season. A 1�C higher aver-
age temperature in the first–fourth, fifth–
eighth and ninth–twelfth weeks after planting
significantly shortens the growing seasons by
about 0.89, 0.82, and 1.31 days, respectively.

Figure 3. Effects of post-planting weather on the length of growing season: Weekly averages.

Note: The dots represent the point estimates of temperature or precipitation effects in the corresponding weeks. The error bars represent 95% confidence
intervals based on two-way clustered standard errors. Temperature and precipitation are measured in degrees Celsius and centimeter, respectively. See
numerical results in appendix table A3.
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These estimates can be translated into a more
than three-day reduction in the length of grow-
ing season if the average temperature over the
entire twelve weeks is 1�C higher. Tempera-
ture effects become insignificant during the
thirteenth–sixteenth weeks, and then become
positive in the later course of the growing sea-
son. A 1�C higher average temperature in the
seventeenth–twentieth and twenty-first–
twenty-fourth weeks prolongs the growing
season by about 0.59 and 0.70 days, respec-
tively. In general, the shortening effect in the
first half of the season still dominates.
The temperature estimates in columns

(2) and (3) support those in column (1). An
additional degree day reduces the season
length by about 0.03–0.04 days in the first half
of the growing season, whereas this effect turns
to positive in a comparablemagnitude over the
last eight weeks. The early-season length-
reduction effects associated with hot days
shown in column (3) mainly captures the bene-
ficial warming impacts as hot days are rare in
the early season and their occurrence highly
correlates with higher average temperatures.
In contrast, the large positive coefficient of
hot days in the later course of the season more
likely reflects the role of high temperatures in
slowing down crop growth as hot days occurs
much more frequently during this period.
Through columns (1) to (3), precipitation

increases in the first eight post-planting weeks
are shown to substantially shorten the growing

season in general. A 1 cm increase in weekly
precipitation over this period significantly
reduces the length of growing season by
0.42–1.23 days. The estimates also suggest that
rainfall deficits significantly accelerate the
crop cycle since the thirteenth post-planting
week. During these weeks, the effect of a
1 cm increase in weekly precipitation ranges
from 0.36–0.96 days, depending on the specifi-
cation and weeks evaluated. We note that the
precipitation estimates are noisier than
the temperature estimates as they are shown
to be slightly sensitive to different regression
specifications.

Yield Implications

As warming persists, the induced shift in
growing seasons can bring more flexibility
in corn planting. An earlier planting date,
together with a shortened growth duration,
could justify corn planting in places used to
be too cold and avoid damages caused by
extreme heat in places used to be too hot.
Based on our empirical estimates, we con-
duct a set of calculations to illustrate that,
even without long-run responses, the short-
run adjustments in growing seasons can
amount to substantial adaptation to climate
change in corn production.

Table 2. Effects of Post-Planting Weather on Growing-Season Lengths

Average temp Degree days Hot days
(1) (2) (3)

Temperature after planting date:
First–fourth weeks �0.885*** [0.110] �0.036*** [0.005] �1.625*** [0.311]
Fifth–eighth weeks �0.816*** [0.199] �0.029*** [0.006] �0.933*** [0.143]
Ninth–twelfth weeks �1.310*** [0.169] �0.043** [0.014] �0.756* [0.292]
Thirteenth–sixteenth weeks 0.228 [0.149] 0.014 [0.012] 0.621 [0.360]
Seventeenth–twentieth weeks 0.586*** [0.138] 0.024** [0.008] 0.983* [0.421]
Twenty-first–twenty-fourth weeks 0.695*** [0.104] 0.035*** [0.008] 1.472** [0.509]
Precipitation after planting date:
First–fourth weeks �0.936*** [0.230] �0.961*** [0.266] �1.225* [0.504]
Fifth–eighth weeks �0.460*** [0.126] �0.425 [0.340] �0.723** [0.249]
Ninth–twelfth weeks �0.330 [0.177] �0.270 [0.223] �0.342 [0.359]
Thirteenth–sixteenth weeks 0.368* [0.158] 0.428* [0.174] 0.620*** [0.178]
Seventeenth–twentieth weeks 0.551*** [0.139] 0.570 [0.301] 0.960*** [0.265]
Twenty-first–twenty-fourth weeks 0.364* [0.169] 0.422 [0.311] 0.453 [0.361]
Observations 2,759 2,759 2,759

Note: Temperature variables are weekly average temperatures in column (1) and degree days above 10�C in column (2), and the number of days with maximum
temperature above 30�C in column (3). All precipitation variables are weekly cumulative precipitations measured in centimeter. All regressions control for site
fixed effects and provincial quadratic time trends. Standard errors in brackets are two-way clustered at sites and province-by-year pairs.
Significance: * <0.05, ** <0.01, *** <0.001.
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We first combine our weekly estimates
shown in figures 2 and 3 with projected future
climate to contextualize how growing seasons
would shift under future climate. We consider
two emission scenarios (RCP 4.5 andRCP 8.5)
under five different global climate models
(GCMs) derived from the Coupled Model
Intercomparison Project Phase 5 (CMIP5):
GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-
LR, MIROC-ESM-CHEM, and NorESM1-M.
These models have recently been thoroughly
evaluated and applied on climate projection
practices in the scientific community (e.g.,Wars-
zawski et al. 2014; Yin, Tang, and Liu 2015; Xie
et al. 2018).15

For each model-scenario combination, we
use average monthly temperature and precipi-
tation over 2070–2099 to represent future cli-
mate, preserving intra-annual variation in
weather at the monthly level. Based on histor-
ical weather observations, we define current
climate by averaging monthly temperature
and precipitation over the last thirty years of
our sample (i.e., 1984–2013). At each site, we
calculate the projected change in temperature
and precipitation from 1984–2013 to 2070–
2099 at the monthly frequency. Appendix
Figure A12 shows the distributions of these
projected changes. Relying on these calcu-
lated monthly differences, we recover future
climate at the daily frequency by adding the
monthly differences back to daily temperature
and precipitation averaged over 1984–2013.16

We eventually construct ten site-level, daily-
frequency datasets that represent projected
changes in climate of the five climate models
based on the two different emission scenarios.

Relying on the weekly average estimates in
figures 2 and 3, we calculate the induced
adjustments in growing seasons under differ-
ent model-scenario pairs by multiplying all
the estimated coefficients with projected
changes in climate of the corresponding
weeks. In this calculation, we use site-specific
median planting dates as the reference dates
for calculating weekly temperature and pre-
cipitation in both planting date and growing-

season length equations. This practice pre-
serves cross-sectional variation in normal
planting time at the site level.
Figure 4 plots the empirical distribution of

the induced shifts in planting dates and grow-
ing season lengths under RCP 4.5 and RCP
8.5 based on the five different climate projec-
tion models. The predicted growing-season
adjustments display a consistent pattern across
climate models and emission scenarios. In all
projections, the median site is predicted to
have an earlier planting date and a shorter
growing-season length. Appendix Figure A13
further illustrates that the induced shifts are
almost exclusively caused by temperature,
not precipitation.
Warmer temperature during the pre-

planting period encourages earlier planting.
Under RCP 4.5, a median site will advance
its planting date by about one to three days
depending on the climate model used, and this
advancement becomes about two–six days
under RCP 8.5. One potential concern is that
the simulated advancements could shift the
planting time into freezing periods that dam-
age yields or physically prevent earlier plant-
ing (Dalhaus et al. 2020; Zohner et al. 2020).
In appendix table A5, we show that this is
not a concern as the minimum temperatures
during the simulated planting weeks are com-
parable or even higher than those during the
observed normal planting weeks.
Under future climate, the reduction in grow-

ing season is comparable in magnitude with
the advancement in planting dates. A median
site will have a roughly one–three and three–
six days shorter growing season under RCP
4.5 and RCP 8.5, respectively. These estimates
suggest that the shortening effects in the early
course of the growing season outweighs
against the lengthening effects in the later
course.
The induced changes in planting dates and

growing season lengths can have profound
implications on corn yields under future cli-
mate. Conceptually, comparing with a coun-
terfactual that no adjustments occur on the
growing season, the shorter growing season
could avoid high temperatures detrimental to
yields, but the earlier planting time could also
reduce moderate heat beneficial to crop
growth. To evaluate the net effect of induced
growing-season adjustments on corn yields,
we pair our growing-season simulations with
empirically identified yield-response function
of corn in China. Because our site-level data
do not record yield information, we adopt the

15RCP is short for Representative Concentration Pathway, a
greenhouse gas concentration trajectory adopted by the IPCC.
RCP 4.5 represents an intermediate scenario and RCP 8.5 repre-
sents a business-as-usual scenario, both are commonly used as
benchmarks in impact evaluations.

16This practice has been widely adopted in previous work since
Schlenker and Roberts (2009). It is a necessary procedure when
the projected outcome is coarser in frequency. The assumption
imposedhere is that the changes inmonthly temperature and precip-
itation are uniformly distributed on all days in the same month.
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empirical estimates in Chen, Chen, and Xu
(2016) that measure the weather-yield rela-
tionship for China’s corn using a county-level
panel over 2001–2009.
For each pair of climate model and emission

scenario, we add the projected changes in
monthly temperature to daily maximum and
minimum temperatures of the current climate.
For each site, we define two time windows for
measuring growing seasons: the fixed and the
adjusted. The fixed window is governed by
the site-specific median planting and maturity
dates, whereas the adjusted window factors in
the predicted changes in planting dates and
growing-season lengths on top of the fixedwin-
dow. Using projected climate, we recover the
weather variables used in the yield-response
function in Chen, Chen, and Xu (2016) over
the fixed and the adjusted growing-season win-
dows, respectively. We multiply the empirical
estimates identified in Chen, Chen, and Xu
(2016) with the two sets of constructed weather
variables and calculate the differences in log
yields between the adjusted and the fixed
growing seasons for each site under each pair
of climate model and emission scenario.17

Table 3 shows the log changes in corn yields
associated with induced growing-season
adjustments and their distributions under dif-
ferent climate models and emission scenarios.
On average, the induced growing-season
adjustments mitigate potential yield losses by
about 1.1%–3.7% and 3.3%–9.0% under
RCP 4.5 and RCP 8.5, respectively. Extrapo-
lated to total outputs in the entire country,
these yield benefits translate into 2.9–9.7 and
8.6–23.5 million metric tons of corn outputs
based on the current production level.18

Although distributional effects exist, corn
yields at most of the sites will benefit from
these growing-season adjustments, especially
under the higher emission scenario.

It is worth noting that these numbers are
obtained by comparing projected yields under
the adjusted with the fixed growing seasons by
the end of this century, holding all else equal.
In this regard, the role of time trends does
not factor into this comparison directly
because both the adjusted and the fixed grow-
ing seasons are evaluated at the same time
period in the future. Still, we believe these
yield benefits are likely lower bound estimates
for the long run. Because the empirical

Figure 4. Empirical distribution of growing-season adjustments induced by future climate.

Note: Boxplots report induced adjustments in planting dates and growing-season lengths of the corn-planted agro-climatic monitoring sites under five climate
models and two emission scenarios, by the end of this century (2070–2099). For each climate model, planting date result is on the left and growing season length
result is on the right. Each box consists of the three quartiles, the whiskers extend from hinges to 1.5 times of the inter-quartile range, and outliers are plotted in
dots. See numerical results in appendix table A4.

17Chen, Chen, and Xu (2016) use the degree days over 8–32�C,
its squared term, and the squared root of degree days above 34�C
as temperature variables, and they use cumulative precipitation
and its squared term as precipitation variables. For predicting log

yields, we rely on their baseline estimates shown in column (1) in
table 4 in Chen, Chen, and Xu (2016).

18We use mainland China’s domestic corn production in 2019
for this calculation.
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parameters we used for projecting growing-
season adjustments and yield implications
only rely on short-run estimates, the projected
changes do not capture potential long-run
adjustments that could occur in reality.

Induced technological improvements likely
aid the planting adjustments in the long run,
as historical evidence has long been suggesting
(Olmstead and Rhode 2011; Beddow and Par-
dey 2015). In the context of our discussion,
genetic engineering and seed improvements
can potentially facilitate lower triggering tem-
peratures for planting crops and lower
demand of heat for cropmaturity, contributing
to even earlier planting and shorter growing
seasons without compromising yields.19

However, in lack of data on seed breeding
and adoption, we are unable to further explore
the role of crop genetics in affecting growing-
season adjustments to climate change.

Long-Run Response

Important distinctions exist between short-run
and long-run adaptations, because economic
agents are usually constrained in their ability
to adjust in the short run, but they could be
more adaptive in the long run. Building on
our short-run estimates, we further explore
potential long-run response in this section. In
particular, we focus on long-run impacts on
planting dates because planting adjustment
mainly reflects induced behavioral responses,
whereas changes in growing season lengths,
conditional on planting dates, are mostly

Table 3. Predicted Log Changes in Yields Associated with Induced Growing-Season
Adjustments

Climate projection model

GFDL-ESM2M HadGEM2-ES IPSL-CM5A-LR MIROC-ESM-CHEM NorESM1-M
(1) (2) (3) (4) (5)

Under RCP 4.5:
Mean 0.011 0.036 0.024 0.037 0.017
SD (0.101) (0.111) (0.093) (0.115) (0.100)
Percentiles:
1% �0.170 �0.118 �0.134 �0.118 �0.195
5% �0.035 �0.017 �0.020 �0.022 �0.029
10% �0.014 �0.006 �0.007 �0.006 �0.008
25% �0.005 0.001 �0.001 0.000 �0.001
50% 0.001 0.015 0.006 0.011 0.006
75% 0.012 0.041 0.028 0.039 0.023
90% 0.081 0.114 0.101 0.124 0.070
95% 0.128 0.193 0.145 0.196 0.131
99% 0.348 0.384 0.307 0.488 0.256
Under RCP 8.5:
Mean 0.033 0.075 0.079 0.090 0.052
SD (0.091) (0.136) (0.124) (0.162) (0.110)
Percentiles:
1% �0.114 �0.049 �0.018 �0.039 �0.079
5% �0.007 �0.006 �0.004 �0.006 �0.006
10% �0.003 0.000 0.000 0.000 �0.001
25% 0.001 0.013 0.014 0.013 0.008
50% 0.015 0.036 0.039 0.040 0.023
75% 0.038 0.081 0.077 0.075 0.049
90% 0.130 0.189 0.239 0.275 0.177
95% 0.169 0.298 0.321 0.341 0.248
99% 0.448 0.810 0.678 0.874 0.488

Note: The predicted log changes in yields are obtained by differencing the predicted log yields under adjusted and fixed growing seasons evaluated at the period
of 2070–2099. The adjusted growing seasons are obtained by multiplying weekly average estimates with the predicted changes in temperature and precipitation
under different climate models and emission scenarios. The yield response function is based on the baseline estimates in Chen, Chen, and Xu (2016).

19In a different context, Tack, Barkley, and Nalley (2015) and
Ortiz-Bobea and Tack (2018) also highlight the role of genetic
improvement in reducing climatic sensitivity and maintaining
yields under future climate.
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governed by bio-physical processes. We
extend our four-week regression in equation
(2) to allow for estimating long-run effects
along with contemporaneous weather effects.
Using moving averages of past weather to

approximate for local climate, we postulate
that the long-run effects on planting time are
realized as past experience shapes farmers’
expectation on a changing local climate.20 It
is important to note that, in the context of
long-run effects, farmers likely make decision
on planting date incorporating potential long-
term change that also matters for the length
of growing season. In this regard, past weather
experience in both the pre-planting and post-
planting periods potentially factors into
farmers’ decision making on planting dates.
Therefore, we specifymoving averages of both
pre-planting and post-planting weather reali-
zations as follows:

In the equation above, ~T
K
it, Mi�1,Mi�12½ � repre-

sents the K-year moving average of the
twelve-week pre-planting mean temperatures,
~T
K
it, Miþ1,Miþ12½ � represents the K-year moving

average of the first twelve-week post-planting

mean temperatures, and ~T
K
it, Miþ13,Miþ24½ � repre-

sents theK-year moving average of the second
twelve-week post-planting mean temperature.

Their precipitation counterparts ~P
K
it, Mi�1,Mi�12½ �,

~P
K
it, Miþ1,Miþ12½ �, and ~P

K
it, Miþ13,Miþ24½ � are defined

in a similar fashion. We combine every twelve
weeks in forming moving averages to alleviate
the low-power concern as the temporal varia-
tion in moving averages is relatively small.
The separation of the first and second twelve-

week post-planting weeks accommodates the
differential short-run impacts identified in esti-
mating growing-season lengths. Other vari-
ables are defined in the same way as in
equation (2). In this estimation, the parame-
ters of βʼs and γʼs identify contemporaneous
short-run effects, whereas the parameters of
θʼs and δʼs identify potential long-run effects.
The estimation results based on K = 5 and K
= 10 are presented in table 4, and additional
results using other values are reported in
appendix table A6.

In both columns in table 4, the first six esti-
mates represent the effects of current-year
weather, and the last six estimates of moving
averages approximate for long-run impacts of
climate. Not surprisingly, the contemporane-
ous temperature and precipitation effects in
table 4 are highly similar to the baseline results
in table 1. However, we do not find evidence of
long-run adjustments because none of the

moving-average coefficients are statistically
significant. As we show in appendix table A6,
this statistical insignificance remains when we
estimate equation (5) using alternative values
of K.

Theories imply that long-run adjustments to
climate change typically involve a learning pro-
cess with non-trivial costs (Kelly, Kolstad, and
Mitchell 2005). It can take a long time to real-
ize this process, because the change in local cli-
mate has to be manifested and perceived by
economic agents, and costly actions have to
be taken to achieve effective adaptation.
Although the data variation in our sample is
sufficient for identifying responses to contem-
poraneous weather fluctuations, the variation
inmoving average weather is still fairly limited.
Therefore, the limited time span we can
observe from the data may have prevented us
from detecting long-run adjustments, even if
they exist. The potentially slow learning

ð5Þ PDit ¼ β1Tit, Mi�1,Mi�4½ � þβ2Tit, Mi�5,Mi�8½ � þβ3Tit, Mi�9,Mi�12½ �

þγ1Pit, Mi�1,Mi�4½ � þ γ2Pit, Mi�5,Mi�8½ � þ γ3Pit, Mi�9,Mi�12½ �

þθ1 ~T
K
it, Mi�1,Mi�12½ � þθ2 ~T

K
it, Miþ1,Miþ12½ � þθ3 ~T

K
it, Miþ13,Miþ24½ �

þδ1~P
K
it, Mi�1,Mi�12½ � þδ2~P

K
it, Miþ1,Miþ12½ � þδ3~P

K
it, Miþ13,Miþ24½ �

þhr tð Þþαiþ εit ,

20This empirical strategy is similar to that in Cui (2020b) for
identifying long-run climatic impacts on crop acreage.
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process brings additional difficulties for discov-
ering the existence of such adjustments.

Input Adjustments

Farmers adapt to different weather realiza-
tions through growing-season adjustments
because climatic factors like temperature
and precipitation, as inputs, directly affect
crop production. These adjustments could
be accompanied with adjustments in other
inputs like fertilizer and pesticide, especially
considering that fertilizer and pesticide
applications may display substitutability
and/or complementarity with heat and water
supply. Therefore, it will be interesting to
explore the relationship between growing-
season and input adjustments. Unfortu-
nately, our site-level data do not have infor-
mation on input usage. To make progress,
we supplement a county-level dataset that
records fertilizer and pesticide applications
over 2001–2015.

We restrict our analysis to counties in which
we have site-level information on corn

growing seasons.21 We obtain within-county
variation in input use by demeaning county-
level data on per-hectare fertilizer and pesti-
cide applications, respectively. In a similar
manner, we also recover within-site variation
in growing season adjustments by demeaning
site-level planting dates and growing-season
lengths, respectively. Because the agro-
climatic monitoring sites are representative
of the local agricultural production, we postu-
late that the within-site changes in planting
dates and growing-season lengths can in gen-
eral reflect the within-county variation in
growing seasons in the county a site resides
in. We further hypothesize that, if growing-
season adjustments are accompanied by input
adjustments, we would be able to detect sys-
tematic correlation between the changes in
growing seasons and the changes in input
applications at the same location.
Figure 5 visualizes these associations by

pairing demeaned fertilizer and pesticide uses
with demeaned planting dates and growing-
season lengths. The dots present values of
the demeaned variables, and the dashed line
illustrates a simple line fit. The practice of
demeaning effectively controls for location-
specific time-invariant characteristics, and the
line fit is essentially a fixed-effects estimate if
we treat a site and its residing county as the
same entity. For both fertilizer and pesticide

Table 4. Effects of Weather and Climate on Planting Dates

Five-year MA Ten-year MA
(1) (2)

Temperature before median planting date:
First–fourth weeks �0.770*** [0.114] �0.766*** [0.138]
Fifth–eighth weeks �0.470*** [0.121] �0.492*** [0.097]
Ninth–twelfth weeks �0.012 [0.093] �0.004 [0.090]
Precipitation before median planting date:
First–fourth weeks �0.458 [0.383] �0.501 [0.847]
Fifth–eighth weeks �1.217* [0.551] �1.277 [0.996]
Ninth–twelfth weeks 0.924 [0.938] 0.959 [1.598]
Moving averages of temperature:
First–twelfth pre-planting weeks �0.046 [0.641] �0.978 [1.156]
First–twelfth post-planting weeks 1.012 [0.662] �1.291 [2.201]
Thirteenth–twenty-fourth post-planting weeks 0.620 [0.649] 3.323 [2.292]
Moving averages of precipitation:
First–twelfth pre-planting weeks �0.582 [2.874] �4.044 [6.104]
First–twelfth post-planting weeks 0.921 [0.985] 1.113 [1.612]
Thirteenth–twenty-fourth post-planting weeks 0.248 [0.831] 0.665 [2.688]
Observations 3,225 3,225

Note: Temperature variables are weekly average temperatures measured in degrees Celsius and precipitation variables are weekly cumulative precipitations
measured in centimeter. The moving averages are constructed over the five and ten years preceded the current year for columns (1) and (2), respectively. All
regressions control for site fixed effects and provincial quadratic time trends. Standard errors in brackets are two-way clustered at sites and province-by-year pairs.
Significance: * <0.05, ** <0.01, *** <0.001.

21After matching sites to counties, the final sample for analyzing
input use only covers the period of 2001–2013.
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uses, we do not find them to be systematically
correlated with adjustments in planting dates
and growing-season lengths. This finding is
further supported by regressions with addi-
tional controls of provincial trends or
province-by-year fixed effects. As shown in
all columns in table 5, there is no evidence that
the within-variation in fertilizer and pesticide
usage is significantly correlated with the
within-variation in planting dates or growing-
season lengths.

Several reasons could explain this result. On
one hand, the adjustments in growing seasons
may not be sufficiently large to incur necessary
input adjustments. On the other hand, farmers
may not be well informed to realize the neces-
sity to adjust input uses along with growing-
season adjustments. Besides, even if farmers
would like to adjust, input markets in rural
China may also be incomplete so that farmers
are unable to make adjustments contempora-
neously. It is also worth noting that there are

Figure 5. Association between input usage and growing season adjustments.

Note: The dots are values of the demeaned variables, and the dashed lines are line-fits of simple linear regressions. Fertilizer and pesticide uses are demeaned
within counties, and planting dates and growing-season lengths are demeaned within agro-climatic monitoring sites. Corn sites are matched to the counties in
which they are located. The sample period covers 2001–2013.
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a few caveats in the analysis above. Our
growing-season data are at the site level,
whereas input data are at the county level, and
the information on input usage is not crop-spe-
cific. These data limitations have prevented us
from rigorously identifying the causal relation-
ship between growing-season adjustments and
input use. Future analysis with better data is still
needed for further improving the understanding
of this relationship.

Regional Heterogeneity

The baseline estimates we have identified on
planting dates and growing-season lengths
can be interpreted as average effects of all
sites. Considering that China is a country with
a vast territory, it is reasonable to believe
response heterogeneity exists across space,
given the spatial heterogeneity in environmen-
tal and resource endowments. We therefore
evaluate regional heterogeneity in growing-
season adjustments by utilizing supplementary
information on agricultural region divisions
officially publicized by the government.
We explore regional heterogeneity in

growing-season adjustments by allowing for
regionally heterogeneous coefficients in our
four-week version regressions represented by
equations (2) and (4). Tables 6 and 7 present
the results of regional heterogeneity for the
planting date regression and the growing-
season length regression, respectively. In each
table, the estimates in all columns are obtained
from a single regression, and each column pre-
sents a set of region-specific coefficients.
Based on the temperature estimates in table

6, we observe a north–south gradient in how
pre-planting temperature affects planting
dates. In the northern regions including the
Northeast and the Northwest, warming during
the first-fourth weeks before median planting
dates significantly advances the actual growing
seasons, but warming occurred even earlier
has no significant impact. In the Huang-huai-
hai, an earlier planting date is associated with
warming during the fifth–twelfth weeks prior
to the normal planting time. But warming that
occurs right before the median planting date
does not have a significant impact. In the
southern regions including the Southwest and
the Yangtze River Delta, warming effects are
found to be statistically insignificant through-
out the twelve pre-planting weeks.T
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This north–south gradient indicates that the
warming-induced advancement in planting
dates is more likely realized in the northern
cool area because cold weather in spring is a
major constraining factor for planting corn.
In contrast, the southern hot area has not been
constrained by heat deficits in planting corn.
The timing difference between the northern
regions and the Huang-huai-hai likely reflects
how uncertainty influences planting decisions.
In the northern regions, even temperature
becomes warmer in more than one month
prior to normal planting time, farmers may still
be reluctant to plant earlier because of the
likelihood of a later cold spell. However, this
is not a severe concern in the Huang-huai-hai
as climate is much milder in this region.

Increasing precipitation before the normal
planting time advances planting dates in the
Northwest. The geological and hydrological
features in some parts of this region deter-
mines that it is short in rainfall and irrigation
with relatively low water retention in soil. A
timely increase in precipitation can improve
soil moisture so that earlier planting becomes
feasible. In contrast, more rainfall near the
planting time in the Northeast is found to post-
pone corn planting. Because corn planting in
this region is highly mechanical, high precipita-
tion can temporarily prevent machines from
entering the field as soil moisture becomes
exceedingly high.A similar effect has also been
found in the US Midwest (Miao, Khanna, and
Huang 2016).

On growing season lengths, table 7 shows
that warmer temperatures during the first half
of the season reduce the length of a growing
season in all regions, but the stage-specificity
and the magnitude of the effects vary across
regions. In the Northeast and the Southwest,
high temperatures significantly shorten the
growing seasons in almost all stages of the -
twelve-week post-planting period. A 1�C
warming over this period would amount to a
roughly 3.6 days reduction of the growing sea-
son in these two regions. Warming in the later
course of the growing season lengthens the
duration of corn growth in the Northeast,
the Northwest, and the Huang-huai-hai. In
contrast, this lengthening effect is insignificant
in the southern region, suggesting that the spe-
cific cultivars adopted in this relatively warmer
region has better adaptability to higher
temperatures.

Increasing precipitation in the early course
of the growing season significantly reduces
the season lengths in all regions except for

the Huang-huai-hai, and this effect is most
substantial during the first four weeks. In the
Northwest and the Yangtze River Delta,
the shortening effect of increasing precipita-
tion become insignificant since the fifth post-
planting week. In the Northeast and the
Southeast, this effect still exists after the fifth
week, and the combined effect over the first
twelve weeks amounts to roughly 2.3 days.
Lowered precipitation in the late course of
the growing season significantly accelerates
the growth duration in the Northeast, the
Northwest, and the Huang-huai-hai. This
stress-induced accelerating effect is the largest
in the Northwest, where a 1 cm reduction in
weekly precipitation over the second twelve
post-planting weeks is associated with a nearly
2.6 days shorter growing season.
As discussed above, the regional heteroge-

neity in induced growing-season adjustments
reflects the uneven distribution of environ-
mental endowments over space. The pattern
of north–south gradient in planting date
responses also corroborate with our rationale
that warming in cool areas helps relax the heat
constraint and provides more flexibility for
crop planting. It is also somewhat reassuring
to discover that the important corn region in
northern China, especially the Northeast, also
exhibits the highest adaptability to contempo-
raneous weather through growing season
adjustments.

Concluding Remarks

Recent studies have shown that climate
change will seriously damage future crop pro-
duction based on panel estimates of weather
shocks. Although an optimally rearranged
growing season could be effective inmitigating
potential yield losses, causal estimates on the
extent to which farmers actually make adjust-
ments on growing seasons are still lacking. In
this article, we empirically quantify the causal
effects of temperature and precipitation on
affecting planting dates and growing-season
lengths. Utilizing a novel panel dataset of
agro-climatic monitoring sites in China, we
show that both planting dates and growing-
season lengths respond to changes in contem-
poraneous temperature and precipitation.
Relying on our estimates, we show that the
adaptive behavior in growing-season adjust-
ments can result in a shift of growing season
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under future climate and partially mitigate
potential yield losses.
In addition to making an important contri-

bution to understanding climatic impacts on
agricultural production, the findings in this
article also provide meaningful implications
on policy discussions centering around agricul-
tural adaptation to climate change. On one
hand, the induced growing-season adjust-
ments should be incorporated in evaluating
the cost effectiveness of adaptation-related
investments on, for instance, protective farm
infrastructure and adaptive seed breeding.
On the other hand, the behavioral response
found in this article, especially on planting
date decisions, highlights the potential value
of improving weather forecasts and practical
guidance so that crop growers can better uti-
lize favorable weather and more effectively
adjust their planting dates.
We acknowledge that this research also has

some limitations. The impacts we successfully
identified in this article are still short-run
effects, and future research on identifying
long-run adjustments are still needed. Our
estimates also do not fully capture the impacts
on some other related margins like the switch
in seed varieties. Besides, our empirical analy-
sis focuses on corn in China, but the behavioral
response in growing-season adjustments could
differ in other contexts for reasons related to
crop biology, technology, and institutions.
Therefore, a more comprehensive under-
standing of the issue requires further studies
on growing-season adjustments of other crops
(like wheat and rice) and in other country
contexts.

Supplementary Material

Supplementary material are available atAmer-
ican Journal of Agricultural Economics online.
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