
Vol.:(0123456789)

https://doi.org/10.1007/s11027-022-09999-0

1 3

ORIGINAL ARTICLE

The uncertainty of climate change impacts on China’s 
agricultural economy based on an integrated assessment 
approach

Qi Cui1 · Tariq Ali2 · Wei Xie3  · Jikun Huang3 · Jinxia Wang3

Received: 8 October 2020 / Accepted: 12 February 2022 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
This study empirically assesses the uncertainty of climate change impacts on China’s agri-
culture economy based on IPCC RCP scenarios. The 95% confidence intervals of China’s 
major crop yields are projected based on an econometric estimation. Then, an agricultural 
partial equilibrium model is employed to reveal the uncertainty of climate change impacts 
on China’s agricultural economy (production, price, trade, and self-sufficiency). The results 
show that, on average, climate change will reduce production, raise prices, increase net 
imports of most crops, and lower China’s crop self-sufficiency. The uncertainty of cli-
mate change impacts on the production of different crops varies greatly. The differences in 
uncertainty intervals of crop production are largely determined by the sensitivity of crop 
yield to climate variables. The crops with the smaller estimated coefficients of crop yield to 
climate variables would have relatively larger uncertainty intervals of production changes. 
The confidence intervals for all crops widen as time passes, indicating the rising uncer-
tainty for projecting future changes of the agricultural economy due to the continuously 
changing climate. Compared with RCP 2.6, the uncertainty of climate change impacts on 
China’s agricultural economy is much higher under RCP 8.5 for all crops. China should 
improve its climate preparedness, considering the range of uncertainty on climate change 
impacts.
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1 Introduction

Over the past century, China has experienced a notably changing climate, which 
is expected to threaten its agricultural economy in the future as well. China’s annual 
mean temperature has risen by 1.38  °C over the past six decades (Committee of 
China’s National Assessment Report on Climate Change, 2015), much higher than the 
global average, and it is projected that the warming trend will continue in the future 
(Nakicenovic et al., 2000; Meehl et al., 2007; Piao et al., 2010; Liang and Yan 2016). 
The severity and frequency of extreme climate events, such as droughts and floods, are 
also expected to rise (Xie et al., 2018). Although China has ensured its food security in 
the past 40 years, the pressure on China’s food security in the future is expected to rise 
due to the ever-increasing population, continuous rise in income, and persistent resource 
constraints (Huang et al., 2017). Future climate change is expected to aggravate China’s 
food security challenges (Li et al., 2020).

Several studies have assessed the impacts of climate change on China’s crop yield, 
but their results have significant disparity due to climate scenarios and methodologies 
for the assessment. In these studies, agronomists mostly employ process-based crop 
models, such as the Decision Support System for Agrotechnology Transfer (DSSAT) 
model, to assess climate change impacts on crop yield (as reviewed in Li and Geng, 
2013; Wang et  al., 2014a, b). For example, Lin et  al. (2005) found that the adverse 
impacts of climate change on wheat yield could reach 5.6–18.2% under the A2 scenario 
by 2020s. Tao et al. (2008) suggest that if the temperature increases by 1 ℃, rice yield 
would decline by 6.1–18.6%, even considering the adaptation measures. Xiong et  al. 
(2009) predicted a relatively moderate decrease of 4.9–8.6% in rice yield by 2050s. 
Meanwhile, a few studies also found positive impacts of climate change on the yields 
of some crops if the  CO2 fertilization effect is considered (Lin et al., 2005). In contrast, 
climate economists generally use econometric models. Using county-based data, Chen 
et al. (2016a) empirically estimated the non-linear and inverted U-shaped relationships 
between crop yields and weather variables and found that by 2100 corn and soybean 
yields will decline by 3–12% and 7–19%, respectively. Chen et al. (2016b) employed the 
same econometric framework and found that rice and wheat yields will decline by 2–6% 
and 3–19% by the end of the twenty-first century due to climate change. Zhang et  al. 
(2017) also suggested that climate change is likely to decrease China’s rice, wheat, and 
corn yields by 36.25%, 18.26%, and 45.10%, respectively, by the end of this century.

Besides the crop yield, an increasing number of studies have assessed climate change 
impacts on multiple elements of the agricultural economy. Climate change would affect 
the consumption, trade, and prices of agricultural products through the impact and feed-
back mechanisms within the economy. Most of these studies coupled the results for 
climate change impacts on crop yield from the processed-based or econometric-based 
models with economic equilibrium models. For example, using the global equilibrium 
model of AGLINK, Zhai and Zhuang (2009) found that climate change would reduce 
China’s total crop production slightly (0.2–0.5%) by 2080. Xie et  al. (2020) used the 
agricultural equilibrium model of China to find that climate change effects on crop out-
put are significant, though with substantial differences among crops, while trade and 
market responses could buffer climate change impacts. Some global studies have also 
assessed the climate impacts on China. However, most of them either lack the solid 
empirical estimation of yield changes for main crops in China or did not apply any 
detailed nationally representative economic model that can capture the mechanisms of 
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climate change impacts accurately (Parry et al., 2004; Zhai and Zhuang, 2009; Calza-
dilla et al., 2013; Nelson et al., 2014; Zhang et al., 2019).

Previous studies paid less attention to the uncertainty of climate change impacts on the 
agricultural economy than the average impact. Most studies simply took the uncertainty 
as the sensitivity analysis for the estimation results. Nevertheless, quantifying the uncer-
tainty and its sources is a major step to improve the interpretation of impacts and resultant 
decisions on adaptation strategies (Ruiz-Ramos and Mínguez, 2010; Gosling et al., 2012). 
The ignorance of the uncertainty would lead to an inaccurate estimation of climate change 
impacts on the agricultural economy, which consequently causes excessive or insufficient 
adaptative measures against climate change (Carvajal et  al., 2017). Burke et  al. (2015) 
showed that the vast majority of quantitative estimates for climate change impacts fail to 
account for well-established uncertainty in future temperature and rainfall changes, lead-
ing to potentially misleading projections. Moreover, the uncertainty of climate change 
impacts would be much different among the crops and can change over time, making cli-
mate change assessment more complicated (Tao et al., 2018). Hence, to accurately assess 
climate change impacts on China’s agricultural economy, the uncertainty from different 
sources should be comprehensively analyzed.

A few studies have analyzed the source of the uncertainty of climate change impacts on 
the agricultural economy; however, none has explicitly examined the uncertainty arising 
from the econometric models. Olesen et al. (2007) attributed the uncertainties of climate 
change impacts on agriculture to the emission scenarios and climate models. Lobell and 
Burke (2008) focused on relative contributions of four major factors, i.e., climate model 
projections of future temperature or precipitation and the sensitivities of crops to tempera-
ture or precipitation changes in assessing agricultural impacts of climate change. Nelson 
et  al. (2014) compared ten leading global economic models in assessing climate change 
impacts on agriculture and found that the model specification and parameter choice are sig-
nificant sources of uncertainty. Rosenzweig et al. (2014) suggested that general circulation 
models (GCMs) and representative concentration pathways (RCPs) contribute substantially 
to the uncertainties of the results, and the uncertainty is higher for soybean and rice than 
for maize and wheat. Tao et al. (2018) quantified and compared the contribution of crop 
model structure, crop model parameters, and climate projections to the total variance of 
ensemble output. They found that the contribution of crop model structure was larger than 
that from downscaled climate projections and model parameters. Although an increasing 
number of studies assess climate change impacts on the agricultural economy based on the 
econometric estimations, they only utilized the estimated coefficients of climate variables. 
For example, Xie et al. (2020) used econometrically estimated coefficients of climate vari-
ables to project future crop yields and then simulated climate change impacts on China’s 
agricultural economy. They seem to ignore the uncertainty arising from the econometric 
models, represented by the confidence intervals of estimated coefficients, which is regarded 
as a source of the uncertainty of climate change impacts.

This study purposes to estimate climate change impacts on China’s agriculture economy 
towards 2050 under IPCC RCP scenarios, with a particular focus on the uncertainty of 
climate change impacts arising from the econometric-based assessments. RCP 8.5 and RCP 
2.6 scenarios are regarded as the worst and best climate change scenarios, respectively.1 

1 RCP 8.5 and RCP 2.6 and are named after a possible range of radiative forcing values in the year 2100 
relative to pre-industrial values (+ 8.5 and + 2.6 W/m2, respectively). We can easily see that RCP 8.5 and 
RCP 2.6 represent high and low carbon emission pathway in the future respectively, and correspondingly 
high and low temperature increase in future (Vermeulen, 2014).
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Specifically, we calculate the projected changes and 95% confidence interval of the 
yield of major crops in China based on an econometric estimation. Then, a widely used 
agricultural partial equilibrium model (China Agricultural Policy Simulation Model, 
CAPSiM) is employed to estimate the uncertainty of climate change impacts on China’s 
agricultural economy through changes in production, price, trade, and self-sufficiency. Our 
study is comparable to the existing studies on the uncertainty of climate change impacts on 
the agricultural economy and considers the uncertainty from the estimated coefficients of 
econometric models, which is poorly understood in previous studies. This paper contributes 
to the literature in the following aspects: (1) the uncertainty of climate change impacts on 
China’s agricultural economy arising from the econometric-based assessment is quantitively 
assessed; (2) the heterogeneity of the uncertainty of climate change impacts among different 
types of crops is revealed. Understanding the uncertainty of climate change impacts on 
the agricultural economy is also vital to making mitigation and adaptation strategies more 
resilient.

The rest of the paper is organized as follows. Section  2 introduces the projection of 
future crop yield. The simulation model is described in Section3. Section  4 reports the 
simulation results for the uncertainty of climate change impacts on China’s agricultural 
production. Section  5 discusses the results and limitations of this study. Section  6 con-
cludes this study with several policy implications.

2  The uncertainty intervals of future crop yield changes

This paper investigates the effects of climate change on China’s agricultural economy 
under the worst (RCP 8.5) and best (RCP 2.6) climate change scenarios. The data on 
changing trends of temperature and precipitation are obtained from Liang and Yan (2016) 
and are based on the RCP scenarios of the Intergovernmental Panel on Climate Change 
Fifth Assessment Report (AR5 report) (IPCC 2014). In Liang and Yan (2016), several 
global circulation models, provided by CMIP5, are applied to project monthly tempera-
ture and precipitation during 2010–2100 in each province of China with the base year of 
1980–2010. We focus on nine crops: rice, wheat, maize, soybean, cotton, rapeseed, pea-
nut, sugarcane, and sugar beet.2 The annual average and standard deviation of temperature 
and precipitation in each crop’s growing season are calculated. The projections show that 
compared to 2010, each crop’s annual average temperature and precipitation will increase 
significantly during 2020–2050. Meanwhile, annual precipitation deviation will enlarge 
significantly for each crop (Appendix Fig. 2).

The changes in crop yield due to climate change are calculated based on the economet-
ric results estimated by Wang (2016), briefly introduced in Appendix A. They used China’s 
provincial panel data for 1980–2010 to estimate the impacts of climate variables on differ-
ent crop yields, including annual temperature, precipitation, and their deviation changes 
in the growing season of major producing provinces, controlling for agriculture input and 
technology progress.3 They found a non-linear correlation between climate variables and 

2 To concord with crop sectors in China’s agricultural equilibrium model (CAPSiM), oilseed yield is the 
average of rapeseed and peanut yields, and sugar yield by sugarcane and sugar beet yields, both weighted 
by the harvest areas in 2015.
3 If the readers are interested in the data source, detail estimation method, and results, you can contact our 
corresponding author to email the report.
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crop yield that could be used to extrapolate the changes of China’s crop yields under RCP 
scenarios for 2010–2050. Moreover, Wang (2016) also reported the standard errors of cli-
mate variables and the 95% confidence intervals of the estimated coefficients. The econo-
metric results of Wang (2016) for the impacts of climate variables on crop yield in China 
are shown in the Appendix (Appendix Table 5 and 6).

The uncertainty of climate change impacts on each crop’s yield is measured in terms 
of the 95% confidence interval of each crop’s yield change. Based on the estimated coeffi-
cients of climate change variables and their standard errors, we can apply the Delta method 
(Wooldridge, 1999; Papke and Woodridge, 2005; Powell, 2007) to estimate the 95% confi-
dence interval of each crop’s yield change due to climate change. Holding the agriculture 
production input unchanged, we apply the Delta method to the non-linear equation that 
links each crop’s yield with climate change variables, which is the simplified equation from 
the econometric model of Wang (2016), as follows:

wherein Y represents the annual yield of each crop. T is the annual temperature, and P is 
precipitation during each crop’s growing season. The square forms of annual temperature 
and precipitation are introduced in Eq. (1) to account for the non-linear effects of climate 
variables. SDT and SDP are the annual standard deviation of temperature and precipitation 
during each crop’s growing season, respectively. �̂  s are the estimated coefficients of 
climate variables by Wang (2016). Differentiating Eq.  (1) would give us a non-linear 
equation linking the percentage changes of each crop’s yield and climate change variables. 
Combining the 95% confidence interval of estimated coefficients of climate change 
variables with the projected change in climate variables, the 95% confidence interval of 
the percentage changes in each crop’s yield caused by climate change is projected under 
RCP 2.6 and RCP 8.5 (Table  1, figures in parentheses). It is worth noting that as the 
changes in climate variables are projected at the national level, Eq. (1) derives the impact 
of future climate change on national crop yield.

The direct impacts of climate change on crop yields are quite heterogeneous among 
crops in China (Table 1). Wheat, rice, and sugar crops are projected to experience yield 
reductions under both RCP 2.6 and 8.5 scenarios, and among them, wheat would have 
the highest yield loss. Influenced by climate change, the wheat yield would decline 
significantly in 2050 by 5.79% under RCP2.6 and 9.39% under RCP 8.5. After wheat, 
rice yield would drop moderately, by 1.51% under RCP 2.6 and 2.62% under RCP 8.5 
in 2050. Climate change impacts on sugar crop yield are projected to be smaller, except 
in 2030 under RCP 8.5. The yields of other crops, including cotton, soybean, and maize, 
may increase under climate change. Cotton will have the most significant increase in yield 
among these crops due to climate change, followed by soybean and maize. Under RCP 8.5, 
the cotton yield is projected to increase by 1.29% in 2030 and 4.05% in 2050. Compared 
with cotton, the positive impacts on soybean and maize are relatively small such that their 
yields would increase by less than 0.5% in 2050 under RCP 8.5, except that maize yield 
would fall in 2030 under RCP 8.5 (− 0.09%). The changing climate would have mixed 
impacts on oilseed yield—declining slightly under RCP 2.6 and increasing by ~ 0.2% under 
RCP 8.5 in 2050.

The uncertainty represented by the 95% confidence interval of crop yield change 
would make it much harder to draw any unequivocal conclusions about climate 
change impacts on crop yield. The 95% confidence interval indicates that crop yield 
changes due to climate change would locate in the range suggested by the confidence 

(1)���(Yt) = �̂1 ∗ Tt + �̂2 ∗ Tt
2 + �̂3 ∗ Pt + �̂4 ∗ Pt

2 + �̂5 ∗ SDTt + �̂6 ∗ SDPt

Mitig Adapt Strateg Glob Change (2022) 27:25 Page 5 of 22 25



1 3

interval with the probability of 95%. It is noteworthy that the uncertainty discussed 
here is accompanied by all econometric-based assessments for climate change impacts. 
Wheat yield changes have the largest confidence interval among the crops, suggest-
ing the most significant uncertainty in assessing climate change impacts. Wheat yield 
is projected to decline by 5.79% under RCP 2.6 and 10.63% under RCP 8.5 in 2050. 
However, as for the uncertainty, the projected ranges of wheat yield change in 2050 
are − 11.51 to 0.31% under RCP 2.6 and − 20.61 to 0.61% under RCP 8.5. Hence, the 
95% confidence interval of wheat yield change spans over negative as well as posi-
tive values. Compared with wheat, rice yield change has a much smaller confidence 
interval, covering only negative values. Though on average, maize yield is projected to 
increase slightly both under RCP 2.6 and RCP 8.5 in 2050, the 95% confidence inter-
vals of maize yield change include negative values. On the other hand, cotton yield 
change would only span over positive values for the 95% confidence interval.

We also see that crop yield changes have larger 95% confidence intervals in 2050 
than those in 2030 and are mainly driven by wider fluctuations in climate change vari-
ables. For example, under RCP 8.5, while wheat yield would change in the range of 
7.39 percent points (− 7.30 to 0.09%) with the probability of 95% in 2030, the range of 
wheat yield change is 21.22 percent points (− 20.61 to 0.61%) in 2050. The larger con-
fidence intervals of crop yield changes in 2050 indicate that as we move farther into 
the future, the uncertainty of climate change impacts on crop yield will grow further, 
accompanied by the continuously changing climate.

Table 1  Impacts of climate change on China’s crop yield under RCP 2.6 and RCP 8.5 in 2030 and 2050

The base year is 2010. The 95% confidence intervals of the changes in each crop’s yield are in parentheses. 
Oilseeds represent an aggregation of peanut and rapeseed crops using each crop’s areas in 2015 as weights 
provided by NBSC (2020); sugar represents an aggregation of sugarcane and sugar beet crops. Due to the 
non-linear relation between crop yield and climate change variables in Eq. 1, the confidence interval of crop 
yield is asymmetric about its mean value
Source: authors’ calculation based on Wang (2016)

2030 2050

RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5

Rice  − 0.59  − 0.75  − 1.51  − 2.62
(− 0.61 ~  − 0.56) (− 0.80 ~  − 0.71) (− 1.60 ~  − 1.41) (− 2.87 ~  − 2.38)

Wheat  − 2.62  − 3.68  − 5.79  − 10.63
(− 5.24 ~ 0.08) (− 7.30 ~ 0.09) (− 11.51 ~ 0.31) (− 20.61 ~ 0.61)

Maize 0.28  − 0.09 0.10 0.13
(0.27 ~ 0.29) (− 0.23 ~ 0.05) (− 0.10 ~ 0.31) (− 0.14 ~ 0.41)

Soybean 0.23 0.08 0.49 0.47
(− 0.01 ~ 0.48) (− 0.02 ~ 0.18) (0.00 ~ 1.00) (0.07 ~ 0.86)

Cotton 0.52 1.29 1.79 4.05
(0.01 ~ 1.04) (0.57 ~ 2.03) (0.78 ~ 2.82) (2.65 ~ 5.47)

Oilseeds  − 0.13 0.03  − 0.05 0.18
(− 0.14 ~  − 0.11) (− 0.09 ~ 0.17) (− 0.19 ~ 0.12) (− 0.09 ~ 0.50)

Sugar  − 0.04 0.00  − 0.05  − 0.02
(− 0.08 ~ 0.00) (− 0.01 ~ 0.00) (− 0.08 ~  − 0.01) (− 0.02 ~ 0.00)
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3  The methodology

3.1  Simulation model

To track the uncertainty of climate change impacts on the agricultural economy, we use 
an agricultural partial equilibrium model of China, CAPSiM (China’s Agricultural Policy 
Simulation Model). CAPSiM was developed by China Center for Agricultural Policy, 
Peking University, in the mid-1990s as a framework for analyzing policies affecting agri-
cultural production, consumption, prices, and trade in China (Huang and Li, 2003). Since 
then, the CAPSiM model has been periodically updated and expanded. Later versions of 
CAPSiM are designed to analyze more intricate policy changes, such as trade liberaliza-
tion, biofuels, biotech, and climate change (Huang et al. 2002; Lin et al. 2012; Huang et al., 
2017). The component crops/commodities are highly disaggregated in the model, account-
ing for more than 90% of China’s agricultural output. The model involves 21 crops, live-
stock, and fishery sectors: including three main cereal crops (rice, wheat, maize), sweet 
potato, potato, soybean, other grain, other edible oil crops, cotton, vegetables, fruit, other 
crops, as well as six categories of livestock products and three categories of fishery goods. 
The accompanying database of CAPSiM has been updated to the year 2015 using the offi-
cial statistics from the NBSC (2020).

The CAPSiM model incorporates three major modules for each of 21 agricultural com-
modities: supply, demand, and market clearing modules. Production equations of each 
commodity, decomposed by area and yield for crop and production or output for the animal 
sector and other products, allow own- and cross-price market responses for producers, as 
well as the effects of shifts in technology and irrigation, and yield changes resulting from 
exogenous shocks of climate and other factors. Demand equations bifurcated into urban 
and rural consumers allow consumers to respond to own- and cross-price, as well as the 
effects of shifts in income, population level, urbanization, market development, and other 
shocks. Market clearing is solved by finding the commodity prices that simultaneously bal-
ance the demand and supply of each commodity. As for international trade, a small-country 
assumption is used, following most partial equilibrium models. A detailed description of 
the working of the CAPSiM model is given in Huang and Li (2003).

A distinguishing feature of CAPSiM is that, unlike other agricultural economic models, 
most of the elasticities in the CAPSiM are based on the econometric estimations made 
under several empirical studies by CCAP (Ma et  al. 2004; Jin et  al. 2010; Wang et  al. 
2014a, b). As the model contains specific equations for the sown area and yield of dif-
ferent crops, it is easy to introduce climate change shocks to simulate their impacts on 
China’s agricultural economy under different RCP scenarios. The CAPSiM model has also 
been extensively used for the projection of China’s agriculture in the future (e.g., Huang 
et al. 2017), which is very critical to construct a reasonable future baseline scenario for this 
study.

3.2  Baseline scenarios

To assess climate change impacts on China’s agricultural economy towards 2050, we first 
establish a baseline scenario using the CAPSiM model by recursively updating the database. 
To do this, a series of assumptions are made concerning China’s economic growth, population 
growth, urbanization, urban and rural households’ income growth, and agricultural technology 
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advancement, following Huang et al. (2017) for assumptions and Huang and Li (2003) and Yang 
et al. (2012) for the procedure. The data on these assumptions are introduced in Huang and Xie 
(2019). The annually averaged growth rate of China’s GDP is assumed to be 5.5%, 4.5%, 4.0%, 
and 3.5% during the period of 2020–2025, 2025–2030, 2030–2035, and 2035–2050, respec-
tively. The population is projected to grow from 1.42 billion in 2020 to 1.45 billion in 2030, then 
fall to 1.35 billion by 2050. The urbanization rate is assumed to increase to 70% in 2030, 73% 
in 2035, and 80% in 2050. The government will continuously increase the input for agricultural 
technology development in the following decades and maintain the annually averaged rate of 
technological progress at a level of 0.5–1.0% for different agricultural products.

In the baseline projection, China’s agricultural production will continuously increase by 
2050, with a simultaneous and significant rise in the imbalance between agricultural produc-
tion and demand (Appendix Tables 7 and 8). By 2050, the domestic production of rice and 
wheat—the major food crops—will mostly meet China’s demand, reaching a high self-suffi-
ciency rate of over 95%. Demand for feed grains (soybean, maize) will grow more quickly than 
their domestic production, leading to declining self-sufficiency rates4 in these crops. If China 
does not implement a tariff-rate quota (TRQ) in the future, China’s maize import is projected to 
surpass 60 million tons by 2050 (compared to 4.79 million tons in 2019), leading to a self-suf-
ficiency rate of 81%. Similarly, soybean import is projected to exceed 100 million tons in 2050 
(compared to 85.51 million tons in 2019), resulting in less than 10% self-sufficiency. Demand 
for sugar crops and edible oil crops will be significantly higher than their respective domestic 
production, leading to decreasing self-sufficiency levels for both groups of crops. In contrast, 
the pace of domestic production of vegetables and fruits is projected to increase with domestic 
demand, ensuring almost complete self-sufficiency. By 2050, China’s self-sufficiency rates will 
range over 70–80% for most livestock products, except beef and dairy. China will maintain an 
almost total supply–demand balance with minimal imports for aquatic products.

3.3  Transmitting yield change to CAPSiM model

We model crop yield changes in response to climate change as shocks to total factor 
productivity (TFP) of crop sectors through the CAPSiM model. Roson and Mensbrugghe 
(2012) modeled the variations in agricultural yield as changes in multifactor productivity 
for agricultural activities so that output volumes vary when using the same mix of 
production factors (they used the ENVISAGE—a general equilibrium economic model). 
The shocks were additive shifters in a yield or supply equation for the partial equilibrium 
models. Robinson et  al. (2014) discussed the implications of incorporating yield shocks 
into general/partial equilibrium models as TFP shifters. In the CAPSiM model, crop yield 
change is a linear function of crop prices and input prices (including fertilizer, land, and 
labor) and three shift variables representing irrigation, policy, and changing climate. For 
this study, the impacts of climate change on crop yield shown in Section 2.1 are transmitted 
into the crop production module in the CAPSiM model as crop yield shifters. To study the 
uncertainty of climate change impacts on China’s agricultural economy, we simulate the 
projection intervals of changes in crop production, price, trade, and self-sufficiency. For 
this, we simulate the mean and 95% confidence intervals of each crop’s yield change in the 
CAPSiM as crop yield shifters.

4 The self-sufficiency rate is defined as the ratio of domestic food production to food supply (production 
plus net import).
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4  The simulation results

The following section describes the simulated results for climate change impacts on Chi-
na’s agricultural economy (production, price, trade, and self-sufficiency) based on the 
CAPSiM model for 2020–2050. Then, we examine the uncertainty of climate change 
impacts on China’s agricultural economy sourced from the econometric model. To save 
space, the results for rice, wheat, maize, soybean, oilseeds, sugar, and cotton are reported 
here. To this end, the percentage changes indicated in the text refer to the difference in 
simulation results with and without climate change.

4.1  The uncertainty of climate change impacts on crop production

On average, climate change impacts on China’s crop production in the future are significant. 
With the CAPSiM model, we find that (1) rice, wheat, and sugar will have production losses 
due to climate change both under the RCP 2.6 and RCP 8.5 (Fig. 1a, b, f), and wheat is pro-
jected to have the worst production losses towards 2050 (1.85% under RCP 2.6 and 4.16% 
under RCP 8.5). The production losses of these crops are much lower than their yield losses. 
(2) Some crops with positive yield changes will end up having lower production. For example, 
by 2050, maize will have a slight yield improvement under RCP 8.5 (0.13%, Table 1). How-
ever, its production is projected to decrease slightly under RCP 8.5 (− 0.59%, Fig. 1c). Rice 
and wheat yields are more severely affected by climate change relative to maize, which would 
lead to higher prices for rice and wheat and stimulate farmers to reduce the planting areas of 
maize. Like maize, soybean has a slightly positive yield impact due to climate change; however, 
affected by the substitution effect between crops, soybean output would decline by 0.31% under 
RCP 2.6 and 1.44% under RCP 8.5 by 2050. (3) Climate change will have mixed effects on the 
output of oilseeds. Although oilseed crop yield is projected to decrease slightly (0.05%) towards 
2050 under RCP 2.6, oilseed output would increase slightly (0.04%) due to rising prices rela-
tive to other crops. However, under RCP 8.5, oilseeds’ output would decline slightly by 0.15% 
towards 2050 regardless of their rising yield (0.18%), resulting from the decreasing prices rela-
tive to other crops. Besides, cotton production would benefit from climate change by 2050, both 
under RCP 2.6 (0.76%) and RCP 8.5 (2.89%). Because cotton yield increases are more signifi-
cant by 2050 (1.79% for RCP 2.6 and 4.05% for RCP 8.5), cotton production will increase by 
2050, although partly offset by the substitution effect arising from competing crops.

The uncertainty of changes in crop production that stems from the econometric results 
makes it trickier to draw clear-cut conclusions about climate change impacts. The shaded 
areas of Fig. 1 that show the projected confidence intervals of the changes in crop produc-
tion due to climate change over the period 2020–2050 represent the uncertainty of crop 
production changes.

We obtain several important findings. First, there is significant disparity among different 
crops on the uncertainty of climate change impacts on the production. Wheat has the largest 
uncertainty for the production changes among the crops. For example, the uncertainty inter-
vals of wheat production changes are from − 3.16 to 0.16% under RCP 2.6 and from − 7.15 
to 0.23% in 2050 under RCP 8.5. Cotton and soybean also have large uncertainty intervals 
for the production changes, as they also have relatively large yield changes. The uncertainty 
interval of cotton production changes in 2050 under RCP 8.5 will be between 0.13 and 6.23%. 
The production of soybean would change over the range from − 3.71 to 1.53%.

Hence, without considering the information from the uncertainty intervals, the esti-
mation provides an inaccurate assessment of climate change impacts on crop production. 
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Fig. 1  The uncertainty of climate change impacts on China’s crop production (%). The red and blue lines 
represent the mean values of crop production changes under RCP 8.5 and 2.6, respectively; the red and blue 
shaded areas represent the uncertainty of crop production changes under RCP 8.5 and 2.6, respectively.  
Source: authors’ simulations based on CAPSiM. a Rice. b Wheat. c Maize. d Soybean. e Oilseeds. f Sugar. 
g Cotton
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Comparably, rice, maize, oilseeds, and sugar have relatively smaller uncertainty intervals 
of production changes. For example, under RCP 8.5, rice production is projected to decline 
over the range from − 1.08 to − 0.60%. The uncertainty interval of the changes in maize 
production is from − 1.38 to 0.31%. Considering the average of the production changes, the 
uncertainty intervals for production changes of these crops are relatively narrower.

Interestingly, we also find that the differences in uncertainty intervals of changes in 
crop production are primarily determined by the sensitivity of crop yield to climate vari-
ables, as we use the estimation by Wang (2016) to project the future yield of crops. The 
crops with the larger estimated coefficients of crop yield to climate variables have rela-
tively larger uncertainty intervals of production changes. In Table 5, wheat has a relatively 
large coefficient in absolute value for temperature and standard deviation of temperature, 
which lead to the large confidential interval of projected changes in wheat yield, consider-
ing the continuous rising mean and standard deviation of temperature. Meanwhile, cotton 
has the largest coefficient of temperature in absolute value, but it also has the negative coef-
ficient of squared temperature, offsetting the effect of the positive coefficient of tempera-
ture (Table 6). As a result, the cotton also has a large confidential interval for the projected 
changes in yield, which leads to great uncertainty for predicting production changes. In 
contrast, the crops with the smaller coefficients to climate variables have relatively narrow 
uncertainty intervals of production changes.

Second, the shaded areas get wider as time passes for all crops, which indicates the 
rising uncertainty for projecting future crop production changes due to the continuously 
changing climate. Both the continuously rising temperature and the increasingly severe 
fluctuation of climate variables would aggravate the uncertainty of climate change impacts 
on crop production over time. For example, under RCP 8.5, the uncertainty interval of 
wheat production change by 2030 is from − 3.84 to 0.18%, expanding to − 8.71 to 0.37% by 
2050. Similarly, the uncertainty interval of rice production change by 2030 is from − 0.45 
to − 0.18% and expands to the range of − 1.08 to − 0.60%. More interestingly, while the 
average change of soybean production is projected to fall slightly towards 2050, the uncer-
tainty of soybean production changes will expand continuously, as the confidential interval 
of soybean yield changes would expand.

Furthermore, the uncertainty of changes in crop production due to climate change is 
much higher under RCP 8.5 than RCP 2.6 (illustrated by a wider shaded area of the latter 
for all crops in Fig. 1). For example, the confidence intervals of changes in wheat produc-
tion in 2050 range over 4.06 percent points (− 3.82 to 0.24%) under RCP 2.6 and 9.08 per-
cent points (− 8.71 to 0.37%) under RCP 8.5. Although, on average, climate change would 
have negative impacts on the production of some crops, their confidence intervals may also 
cover positive values. For example, average wheat production would decline significantly 
by 4.16% under RCP 8.5 in 2050 (Fig. 1b). However, its confidence interval representing 
projection uncertainty spreads from − 8.71 to 0.37%. The uncertainty interval suggests that 
we cannot exclude the possibility of climate change to impact wheat production positively. 
Therefore, we need to be more cautious in precisely assessing climate change impacts 
on crop production by not only concentrating on the mean effects but also the projection 
uncertainty from the econometric-based assessment.

4.2  The uncertainty of climate change impacts on crop prices

On average, the prices of adversely affected crops by climate change would rise by 2030 
and 2050, both under RCP 2.6 and RCP 8.5. As mentioned above, rice, wheat, and sugar 
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production will decrease due to climate change, and their prices will also rise, resulting 
from yield loss caused by climate change. Wheat, which experiences the most severe 
yield loss, will have the most substantial price increase towards 2050 of 6.83% under 
RCP 2.6 and 17.53% under RCP 8.5 (Table  2). Rice price will increase moderately 
towards 2050 by around 2.66% under RCP 2.6 and 5.29% under RCP 8.5. Compared 
with wheat and rice, the increase in sugar prices will be much smaller. Meanwhile, cot-
ton, which is positively affected by climate change, will have a decrease in its price both 
under RCP 2.6 (0.27%) and RCP 8.5 (1.37%) towards 2050. However, some crops with 
positive yield changes due to climate change will also have a price increase. Influenced 
by climate change, maize, soybean, and oilseeds will have yield increase under RCP 
8.5 in 2050, and in the meantime, their prices will also increase slightly. For example, 
maize prices will increase by 0.31% under RCP 2.6 and 0.39% under RCP8.5 in 2050, 
respectively (Table 2).

Like crop production, the simulated impacts of climate change on crop prices will also 
have considerable uncertainty based on the econometric results. Among them, wheat will 
have the largest confidence interval of price changes, accompanied by the largest uncer-
tainty of production changes. The wheat price in 2050 will change over the range of − 0.44 
to 13.29% under RCP 2.6 and − 1.00 to 38.25% under RCP 8.5. The uncertainty interval 
shows that wheat prices may increase by more than 30% or even decrease slightly under 
RCP 8.5 in 2050. Although cotton has relatively large uncertainty intervals of production 
changes, the uncertainty intervals of its price changes are relatively small. The change of 
cotton price in 2050 ranges from − 2.73 to 0.05% under RCP 8.5, compared with the uncer-
tainty interval of the production change from 0.13 to 6.23%.

Moreover, although the uncertainty intervals of other crops are much smaller than those 
of wheat, some crops, such as maize, soybean, and oilseeds, with an average increase in 
prices, have confidence intervals covering negative values. For example, the maize price 
will increase on average by 0.39% under RCP 8.5 in 2050. However, the confidence 

Table 2  The uncertainty of climate change impacts on crop prices under RCP 2.6 and 8.5 (%)

The uncertainty intervals are shown in the parentheses. Due to the non-linear relation between crop yield 
and climate change variables in Eq. 1, the confidence interval of crop yield is asymmetric about its mean 
value. Source: authors’ simulations with CAPSiM

2030 2050

RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5

Rice 1.49
(0.98 ~ 1.96)

2.32
(1.43 ~ 3.18)

2.66
(1.02 ~ 1.79)

5.29
(2.98 ~ 7.55)

Wheat 3.54
(− 0.58 ~ 7.49)

7.37
(0.10 ~ 14.86)

6.83
(0.44 ~ 13.29)

17.53
(− 1.00 ~ 38.25)

Maize  − 0.25
(− 0.46 ~  − 0.06)

0.16
(− 0.37 ~ 0.67)

0.31
(− 0.40 ~ 0.16)

0.39
(− 0.19 ~ 0.96)

Soybean  − 0.03
(− 0.13 ~ 0.07)

 − 0.01
(− 0.14 ~ 0.12)

 − 0.02
(− 0.17 ~ 0.11)

0.13
(− 0.11 ~ 0.36)

Cotton 0.27
(− 0.24 ~ 0.75)

 − 1.18
(− 2.15 ~  − 0.24)

 − 0.27
(− 0.90 ~ 0.29)

 − 1.37
(− 2.73 ~  − 0.05)

Oilseeds  − 0.05
(− 0.39 ~ 0.27)

 − 0.17
(− 0.44 ~ 0.07)

 − 0.15
(− 0.58 ~ 0.20)

0.20
(− 0.19 ~ 0.53)

Sugar 0.15
(− 0.08 ~ 0.36)

0.40
(0.01 ~ 0.79)

0.32
(− 0.09 ~ 0.50)

0.68
(0.02 ~ 1.42)

Mitig Adapt Strateg Glob Change (2022) 27:2525 Page 12 of 22



1 3

interval of changes in maize price ranges from − 0.19 to 0.96%. Therefore, more prudence 
should be shown while assessing climate change impacts on crop prices and devising adap-
tation strategies.

4.3  The uncertainty of climate change impacts on crop trade

On average, China’s net imports of the crops adversely affected by climate change will 
increase significantly, especially rice and wheat. Because of the largest yield loss, wheat is 
projected to have the most significant increase in net imports both under RCP 2.6 and RCP 
8.5. The net imports of wheat in 2050 will increase by 20.33% under RCP 2.6 and 56.81% 
under RCP 8.5 (Table 3). Similarly, rice net imports in 2050 will increase by 22.16% under 
RCP 2.6 and 43.93% under RCP 8.5. The net import of sugar would also increase under 
both RCP 2.6 and RCP 8.5. Moreover, cotton will see a decline in net imports both under 
RCP 2.6 and RCP 8.5, which is consistent with positive yield changes and falling domes-
tic prices for cotton. The net imports of other crops, including maize, soybean, and oil-
seeds, will increase under RCP 2.6 and decrease under RCP 8.5 in 2050. For example, 
soybean net import will decrease by 0.47% under RCP 2.6 in 2050 and increase moderately 
by 1.69% under RCP 8.5. The changing trends of soybean net imports are consistent with 
domestic soybean prices in that soybean prices will decrease by 0.02% under RCP 2.6 and 
increase by 0.13% under RCP 8.5 (Table 2). Interestingly, maize net imports will decrease 
by 0.47% with rising prices (0.31%) under RCP 2.6 in 2050.

The simulated impacts of climate change on crop net imports will also have consider-
able uncertainty stemming from the econometric results. Wheat, for example, will have the 
widest confidence interval of net import, where the net import in 2050 will change over the 
range of − 1.33 to 42.42% under RCP 2.6 and − 3.06 to 134.10% under RCP 8.5 (Table 3). 
The large uncertainty interval shows that wheat net imports may more than double due to 
climate change or may even decrease slightly under RCP 8.5 in 2050. Following wheat, 
rice will also have wide uncertainty intervals of net import changes. Moreover, although 

Table 3  The uncertainty of climate change impacts on net imports of crops under RCP 2.6 and 8.5 (%)

The uncertainty intervals are shown in the parentheses. Source: CAPSiM simulation

2030 2050

RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5

Rice 9.86 (6.51 ~ 12.99) 15.35 (9.50 ~ 21.04) 22.16
(14.96 ~ 28.84)

43.93 (24.80 ~ 62.57)

Wheat 10.86
(− 1.74 ~ 23.27)

22.87 (0.29 ~ 47.33) 20.33
(− 1.33 ~ 42.42)

56.81
(− 3.06 ~ 134.10)

Maize  − 1.11
(− 2.06 ~  − 0.24)

0.64
(− 1.63 ~ 2.87)

 − 0.47
(− 1.77 ~ 0.72)

1.69
(− 0.84 ~ 4.20)

Soybean  − 0.06
(− 0.29 ~ 0.15)

 − 0.02
(− 0.32 ~ 0.27)

 − 0.05
(− 0.38 ~ 0.25)

0.28
(− 0.24 ~ 0.79)

Cotton 0.60
(− 0.52 ~ 1.67)

 − 2.60
(− 4.70 ~  − 0.53)

 − 0.62
(− 1.97 ~ 0.65)

 − 3.00
(− 5.92 ~  − 0.10)

Oilseeds  − 0.11
(− 0.87 ~ 0.60)

 − 0.38
(− 0.98 ~ 0.16)

 − 0.35
(− 1.29 ~ 0.46)

0.46
(− 0.43 ~ 1.20)

Sugar 0.33
(− 0.19 ~ 0.81)

0.91
(0.01 ~ 1.79)

0.50
(− 0.20 ~ 1.12)

1.52 (0.05 ~ 3.19)
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the uncertainty intervals of other crops are much smaller than those of wheat and rice, 
some crops, such as maize, soybean, and oilseeds, with average expansion net import, have 
confidence intervals covering negative values. For example, the net import of maize will 
increase on average by 1.69% under RCP 8.5 in 2050. However, the confidence interval 
of maize net import changes is from − 0.84 to 4.20%. These results further show that we 
should be more cautious while drawing conclusions about the climate change impacts on 
net imports of crops.

4.4  The uncertainty of climate change impacts on crop self‑sufficiency

Our results show that, on average, climate change will lower China’s crop self-sufficiency. 
Compared to the baseline scenario, crops experiencing adverse yield shocks will decrease 
self-sufficiency rates (Table 4). Among the crops, wheat has the most significant reduction 
in self-sufficiency rate in 2050 (by 0.48 percentage points under RCP 2.6 and 1.37 percent-
age points under RCP 8.5), which is consistent with our results that wheat output will drop 
by the highest margin and its net import increase the most. Under the RCP 2.6 scenario, the 
self-sufficiency rates of rice, wheat, and sugar will decrease in 2050 due to climate change. 
Other crops will have rising self-sufficiency rates under RCP 2.6, including maize, soybean, 
cotton, and oilseed crops. On the other hand, under the RCP 8.5 scenario, all crops will have 
lower self-sufficiency rates by 2050 than 2020, except for cotton, which benefits the most 
from climate change. The overall self-sufficiency rate in major cereals5 would decrease by 
0.21 percentage points under RCP 2.6 and 0.65 percentage points under RCP 8.5.

The simulated impacts of climate change on crop self-sufficiency will also have consider-
able uncertainty based on the econometric results. Once again, wheat will have the broadest 

Table 4  The uncertainty of climate change impacts on crop self-sufficiency under RCP 2.6 and 8.5 (per-
centage points)

The uncertainty intervals are shown in the parentheses. Source: CAPSiM simulation

2030 2050

RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5

Rice  − 0.05
(− 0.07 ~  − 0.04)

 − 0.08
(− 0.11 ~  − 0.05)

 − 0.11
(− 0.14 ~  − 0.07)

 − 0.21
(− 0.29 ~  − 0.12)

Wheat  − 0.24
(− 0.51 ~ 0.04)

 − 0.50
(− 1.05 ~ 0.00)

 − 0.48
(− 1.02 ~ 0.03)

 − 1.37
(− 3.31 ~ 0.08)

Maize 0.16
(0.04 ~ 0.30)

 − 0.09
(− 0.41 ~ 0.24)

0.13
(− 0.19 ~ 0.48)

 − 0.46
(− 1.14 ~ 0.23)

Soybean 0.06
(− 0.10 ~ 0.23)

0.00
(− 0.24 ~ 0.25)

0.04
(− 0.19 ~ 0.29)

 − 0.21
(− 0.63 ~ 0.22)

Cotton  − 0.27
(− 0.74 ~ 0.23)

1.15
(0.24 ~ 2.09)

0.34
(− 0.35 ~ 1.07)

1.63
(0.06 ~ 3.22)

Oilseeds 0.02
(− 0.11 ~ 0.17)

0.08
(− 0.02 ~ 0.19)

0.07
(− 0.08 ~ 0.25)

 − 0.08
(− 0.21 ~ 0.08)

Sugar  − 0.06
(− 0.16 ~  − 0.04)

 − 0.18
(− 0.35 ~ 0.00)

 − 0.13
(− 0.29 ~ 0.05)

 − 0.40
(− 0.84 ~  − 0.01)

5 Major cereals include rice, wheat, and maize.
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confidence interval of self-sufficiency rate, where wheat self-sufficiency rate in 2050 will 
change over the range of − 1.02 percentage points to 0.03 percentage points under RCP 2.6 
and − 3.31 percentage points to 0.08 percentage points under RCP 8.5 (Table 4). The uncer-
tainty range shows that the wheat self-sufficiency rate may decline by more than three percent-
age points due to climate change or may even increase slightly under RCP 8.5 in 2050. Fol-
lowing wheat, maize also has wide uncertainty intervals for the changes in the self-sufficiency 
rate. Moreover, although the uncertainty intervals of other crops are much smaller than those 
of wheat and maize, the uncertainty intervals still make it harder to reach an unequivocal con-
clusion about climate change impacts on crop self-sufficiency rates. Therefore, more cautious-
ness should be paid to precisely assess climate change impacts on crop self-sufficiency.

5  Discussion

The uncertainty analysis for climate change impacts could also primarily illustrate the 
strengths and weaknesses of the econometric models against the process-based models. The 
econometric models and process-based models are widely used in previous studies to estimate 
climate change impact on agricultural production (Li and Geng, 2013; Wang et al., 2014a, b). 
As the econometric estimations utilized the statistical data on agricultural production, the esti-
mations could capture the changes in agricultural production that happened in the field caused 
by climate change. The econometric models could also consider regional economic conditions 
that influence agricultural production by controlling regional fixed effects or economic vari-
ables, such as non-farm wages, land rents, and governmental policies. Another advantage of 
econometric models is that they mostly utilize the statistical data at the provincial and county 
level, which are relatively easy to obtain. However, as shown in this study, the econometric 
models would suffer the uncertainty for assessing climate change impacts from the estimated 
coefficients of climate variables. In comparison, the processed-based models can depict the 
growth process of different crops in fine detail and simulate the impacts of climate variables 
(such as climate and precipitation) on crops at different growing stages, which theocratically 
produce more certain results. They could also simulate the effects of mitigation and adaptation 
strategies for buffering climate change impacts on the agricultural economy, which is more 
challenging to perform with econometric models. Another advantage of process-based models 
is that they can explicitly examine the impact of  CO2 fertilization effect on crop production, 
which may benefit the crop production and even offset the adverse impact of changing climate 
(Weigel and Manderscheid, 2012; Karimi et al., 2018).

This study relies on the econometric results from Wang (2016), which estimated the 
impacts of climate change on China’s crop yield using provincial panel data. Several stud-
ies have also estimated the climate variable impacts on China’s crop yield with econometric 
models (Chen et al., 2018). Compared with Wang (2016), they only analyzed the climate 
change impacts on the yield of staple food crops, including wheat, rice, maize, and soy-
bean, demonstrating a clear advantage of using Wang (2016). The other advantage of using 
Wang (2016) is that they selected the yearly averaged temperature and precipitation and 
the standard deviation of temperature and precipitation as climate variables, while other 
studies mostly used the non-linear climate variables, such as growing degree days (GDD), 
that are created from the daily value of temperature and precipitation. As the projections of 
climate variables at the yearly level are relatively easier to obtain, the equations estimated 
by Wang (2016) can more easily project the future changes in crop yield. Considering two 
factors, we adopted the equations estimated by Wang (2016) to project future crop yields.
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This study has three major limitations. First, we only consider climate change impacts 
on China’s agricultural economy through changing crop yield. However, climate change 
would also influence agricultural production through other channels, such as the reduction 
of labor productivity (Chen and Gong, 2021), sea-level rise (Cui et al., 2018), the diseases 
and insect pests (Savary et al., 2019), and the extreme weather events (Xie et al., 2018). 
These diversified channels may exacerbate the uncertainty of climate change impacts on 
the agricultural economy, which should be explored in future studies. Second, the choice of 
climate variables would change the econometric results for climate change impacts on crop 
yield, consequently influencing the simulation impacts on the agriculture economy. Hence, 
the choice of climate variable is a source of uncertainty for the assessment and should be 
included in future works. Third, we do not consider the impacts of climate change in other 
countries on China’s agricultural economy through the trade of agricultural products. As 
we could not obtain the impacts of climate change on crop yield for other countries esti-
mated by the econometric model, we simulate climate change impacts on China’s agricul-
tural economy with a single-country partial equilibrium model, holding global food prices 
unchanged.

6  Conclusion

Like many countries around the globe, climate change is a serious challenge to the future 
agricultural economy in China, which relies on agriculture to feed its ~ 1.4 billion people. 
However, previous studies have not explicitly accounted for the uncertainty of climate 
change impacts on China’s agricultural economy arising from the econometric results. To 
narrow this research gap, we assess climate change impacts on China’s agriculture and 
elaborate the impact mechanisms based on an integrated assessment approach, coupling 
the econometric results and the agricultural partial equilibrium model of China, with a par-
ticular focus on the uncertainty of climate change impacts, from 2020 to 2050 under IPCC 
RCP 2.6 and RCP 8.5 scenarios.

Our results show that climate change would significantly affect agricultural produc-
tion but with large variations among crops. (1) On average, climate change will dam-
age production, raise prices, increase net imports of most crops, and lower China’s 
crop self-sufficiency. (2) There is great disparity among different crops on the uncer-
tainty of climate change impacts on the production. Wheat has the largest uncertainty 
for climate change impacts. (3) The differences in uncertainty intervals of crop pro-
duction changes are determined by the sensitivity of crop yield to climate variables. 
The crops with the smaller estimated coefficients of crop yield for climate variables 
have relatively large uncertainty intervals of production changes. (4) The confidence 
intervals for all crops get wider as time passes, indicating the rising uncertainty for 
projecting future changes of crop production, price, and trade due to the continuously 
changing climate. (5) Compared with RCP 2.6, the uncertainty of climate change 
impacts on China’s agricultural economy is much higher under RCP 8.5. Therefore, the 
uncertainty of climate change impacts that stem from the econometric-based assess-
ment makes it harder to reach unequivocal conclusions about climate change impacts 
on China’s agricultural economy.
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Our results have important policy implications for national adaptation plans. First, the 
adaptation policies should prioritize the crops based on the severity of production losses. 
Notably, the investments in adaptation measures should be channeled to more adversely 
affected crops and those that play a more vital role in national food security. Second, more 
consideration should be paid to precisely assess climate change impacts on the agricul-
tural economy in the future, as the uncertainty would expand remarkably accompanied by 
changing climate. Furthermore, more sources of the uncertainty should be explored fur-
ther, including the uncertainty from the choice of climate variables in econometric models. 
Third, the adaptation policies should be given more resilience and flexibility to cope with 
the uncertainty of climate change impacts on China’s agricultural economy. The strength-
ening of adaptation policies should depend on the severity of agricultural damages, fully 
considering the uncertainty intervals of climate change effects. On the contrary, if the 
adaptation policies are too rigid, we might end up having over-adaptation or insufficient 
adaptation to climate change. Moreover, the resilience of agricultural production could be 
strengthened by such crop diversification, drought-resistant varieties, climate-risk insur-
ance, and climate-smart agriculture.

Appendix

A. The econometric results for climate change impacts on China’s crop yield.
Wang (2016) estimated the impacts of climate variables on China’s cop yield with pro-

vincial panel data. Nine crops are covered, including rice, wheat, maize, soybean, cotton, 
rapeseed, peanut, sugarcane, and sugar beet. The econometric equation for each crop is 
specified as follows:

where i and t donate the province and year respectively. The dependent variable, Log(yit), 
represents the logarithmic function of the crop yield for province i in year t. Tempit and 
Precit are the average values of temperature and precipitation during the growth period of 
each crop, respectively. The Std_temit and Std_preit are the standard deviations of tempera-
ture and precipitation during the growth period of each crop for province i in year t. The 
producing input (inputkit) of each crop includes fertilizer, labor, and other inputs, all in the 
logarithmic function. In addition, the time trend variable T and provincial fixed effects Rt 
are also controlled. The fixed-effect regression is employed to estimate Equation A1.

The historical data on daily temperature and precipitation of each province from 1980 to 
2010 are derived from China Meteorological Data Network (http:// data. cma. cn). Then, the 
average values of temperature and precipitation during the growth period of each crop, as 
well as the standard deviation of temperature and precipitation, are calculated. The provin-
cial data on crop yield and production input from 1980 to 2010 are collected from China 
Rural Statistical Yearbook (1981 − 2011).

B. The supply and demand projection of China’s agricultural products in 2050.
C. The projection of future climate variables under RCP 2.6 and RCP 8.5
 

(A1)

Log
(

yit
)

= �0 + �1Tempit + �2Tempit
2 + �3Precit

+�4Precit
2 + �5Std_temit + �6Std_preit

+
∑

k
�klog(inputkit) + �Tt + �Ri + �it
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Table 5  Estimated impacts of climate change on the yield of wheat, rice, maize, and soybean in China

The t statistic is in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1
copied from Wang (2016)

Wheat Rice Maize Soybean

Climate during growing season
 Temperature  − 0.0675* 0.0431***  − 0.0160  − 0.0372

(1.73) (3.25) (0.32) (0.39)
 Temperature squared 0.0012  − 0.0014***  − 0.0015 0.0005

(0.71) (3.95) (0.99) (0.20)
 Precipitation 0.0005** 0.0001** 0.0005*** 0.0014***

(2.41) (2.31) (2.72) (4.69)
 Precipitation squared  − 0.0000007***  − 0.0000001***  − 0.0000002***  − 0.00000072***

(3.83) (4.80) (2.79) (4.51)
Climate variation in growing season
 Standard deviation of tem-

perature
 − 0.0254** 0.0061  − 0.0569***  − 0.0176
(2.10) (1.60) (4.78) (0.95)

 Standard deviation of precipi-
tation

 − 0.0015**  − 0.0004***  − 0.0011**  − 0.0019***
(2.27) (2.71) (2.33) (2.70)

Production inputs
 Fertilizer (yuan/ha) (log) 0.2366*** 0.2078*** 0.2906*** 0.0232

(9.09) (13.68) (10.76) (1.10)
 Labor days (days/ha) (log)  − 0.0327  − 0.0406*** 0.0345 0.1754***

(1.33) (2.73) (1.23) (3.85)
 Other material input (yuan/

ha) (log)
0.2290*** 0.1547*** 0.1586*** 0.2457***
(7.23) (9.41) (6.57) (5.46)

Technology progress
 Year 0.0109*** 0.0025*** 0.0113*** 0.0183***

(7.68) (3.16) (7.57) (8.34)
 Province dummy Not reported Not reported
 Constant  − 15.7207*** 1.0055  − 16.3939***  − 31.3032***

(5.71) (0.63) (5.72) (7.29)
 Adj R-squared 0.841 0.6588 0.7858 0.6750
 Observations 697 1171 658 438
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Table 6  The estimated impacts of climate change on the yield of cotton, rapeseed, peanut, cane, and sugar 
beet in China

The t statistic is in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1
copied from Wang (2016)

Cotton Rapeseed Peanut Sugarcane Sugar beet

Climate during growing season
Temperature 0.3366*** 0.0251 0.0469  − 0.3769  − 0.1893

(2.69) (0.44) (0.26) (0.93) (1.06)
Temperature squared  − 0.0074**  − 0.0020  − 0.0001  − 0.0004 0.0027

(2.34) (0.83) (0.01) (0.03) (0.50)
Precipitation  − 0.0002 0.0012*** 0.0002  − 0.0022 0.0003

(0.65) (3.29) (0.59) (1.45) (0.24)
Precipitation squared 0.00000005  − 0.0000007***  − 0.0000001 0.00000061  − 0.00000026

(0.29) (3.52) (0.64) (1.40) (0.17)
Climate variation in growing season
Standard deviation of 

temperature
 − 0.0327  − 0.0087  − 0.0513* 0.1423  − 0.0400
(1.18) (0.35) (1.86) (1.07) (1.22)

Standard deviation of 
precipitation

 − 0.0026***  − 0.0019*  − 0.0011*  − 0.0021  − 0.0036*
(3.68) (1.92) (1.66) (0.77) (1.75)

Production inputs
Fertilizer (yuan/ha) (log) 0.3737*** 0.1026*** 0.0192 0.5326*** 0.0265

(6.26) (2.97) (0.43) (3.77) (0.44)
Labor days (days/ha) (log) 0.1994*** 0.0666 0.1751** 0.0093 0.0582

(2.78) (1.49) (2.35) (0.04) (0.65)
Other material input 

(yuan/ha) (log)
 − 0.0279 0.0611 0.1035 0.1714 0.0163
(0.51) (1.45) (1.48) (1.50) (0.26)

Technology progress
Year 0.0132*** 0.0197*** 0.0202***  − 0.0170 0.0369***

(4.81) (7.96) (5.36) (1.26) (7.60)
Province dummy Not reported Not reported Not reported Not reported Not reported
Constant  − 25.4083*** -33.9056***  − 35.1063*** 47.6406*  − 61.6706***

(4.87) (7.12) (4.60) (1.75) (6.75)
Adj R-squared 0.553 0.6343 0.5380 0.2349 0.8065
Observations 387 393 329 159 149
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Table 7  The projection for the crop supply and demand in 2050 (million tons)

Huang and Xie (2019)

Rice Wheat Maize Soybean Cotton Oilseeds Sugar Vegetable Fruit

Production 109 98 274 11 4 8 6 428 320
Import 2 2 66 106 3 1 20 0 2
Export 0 0 0 0 0 0 0 21 5
Total demand 111 100 340 117 7 9 26 407 317
Household consumption 73 61 2 114 0 8 14 299 169
Per capita consumption (kg) 52 43 2 81 0 6 10 214 121
Other consumption 38 39 338 3 7 1 12 108 148
Self-sufficiency rate (%) 98 98 81 10 55 90 22 105 101

Table 8  The projection for the supply and demand of animal products in 2050 (million tons)

 Huang and Xie (2019)

Pork Beef Mutton Poultry Egg Diary Aquatic

Production 69 8 5 22 22 59 43
Import 2 4 2 1 0 40 6
Export 0 0 0 0 0 0 4
Total demand 71 12 7 23 22 99 46
Household consumption 70 12 6 23 21 98 46
Per capita consumption (kg) 50 8 4 16 15 70 33
Self-sufficiency rate (%) 98 65 75 98 100 60 94
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Fig. 2  The percentage changes in average and standard deviation of temperature and precipitation for differ-
ent crops during their growing season by 2050 (base year: 2010).  Source: Liang and Yan (2016)
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