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Abstract
With rising physical and economic scarcity of water, increasing or sustaining
agricultural production while limiting or reducing consumptive water use is an
urgent challenge. This article examines the case of four countries—India, China,
western United States, and Israel—where there is a long history of irrigated agri-
culturewith significant public and private investments, to identify key themes for
managing irrigation under increasing physical and economic water scarcity. The
focus of irrigationmanagement has expanded from investing in irrigation infras-
tructure to reforming institutions; strengthening policies pertaining to irrigation
prices and rights; using incentives to reward reductions in irrigation applica-
tion; and improving irrigation efficiency. However, this may not be sufficient
to reduce consumptive use of water in agriculture. Reducing freshwater use in
agriculture will require cost-effective harnessing of other water sources through
processes such as desalination and wastewater reuse, which may be difficult to
implement inmost geographies. Changes to policies in other sectorswill likely be
needed, especially in food procurement and land-use, which require balancing
water security with food security, and supporting potential losses in livelihoods
and incomes from such changes. Finally, reductions in agricultural water use in
a country will likely have implications for water use in other countries, through
imports.
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1 INTRODUCTION

Globally, irrigation accounts for 70% of withdrawals from
freshwater surface and subsurface sources (Zhang et al.,
2022). With rising physical and economic scarcity of water,
increasing or sustaining agricultural productionwhile lim-
iting or reducing consumptive water use is an urgent
challenge for countries. This article examines the case of
four countries that share a long history of irrigated agri-

culture with significant public and private investments,
to identify key themes in managing water as scarcity
increases.
India’s groundwater resources are rapidly depleting,

especially in the northwest (Rodell et al., 2009). While
the focus has switched from augmenting supply to
managing demand, a long history of non-regulation of
abstraction coupled with subsidies for pumping (Shah
et al., 2012; World Bank, 2010) makes punitive and
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payment-based approaches infeasible to implement; the
focus is instead on positive incentives such as payments
to farmers to reduce groundwater extraction (Fishman
et al., 2016; Mitra et al., 2022) or to switch to water-saving
cultivation practices for staples. These approaches are
likely insufficient to address the seemingly unstoppable
problem of groundwater drawdown. Given India’s political
system, creating nested approaches at different govern-
ment levels, strengthening legal frameworks, adopting
prices and punitive measures, incubating community-
based local management approaches, and routine moni-
toring to adaptively learn from successes and failure will
be needed to rationalize both surface and groundwater use
in agriculture. Crop procurement policies that encourage
the production of water-intensive wheat and rice need to
be reconsidered, and livelihood transitions to move away
from wheat-rice systems need to be supported.
While the share of water use in agriculture in China

has declined, pressure on groundwater has substantially
increased, especially in the North China Plains, which
has been accompanied by a decline in groundwater tables
(Wang, Jiang, et al., 2020). China is focusing on demand-
side management using both regulatory andmarket-based
instruments, under a nested approach of water manage-
ment at different government levels (Wang et al., 2005;
Wang, Jiang, et al., 2020; Wang, Zhu, et al., 2020). There
is increasing recognition that these efforts may not be suf-
ficient to reduce domesticwater use in agriculture; and this
may require China to reconsider its goals of self-sufficiency
in food production. This will have implications for water
use beyond China’s territorial boundaries.
The western United States presents a case where water

rights have been extensively used for management, with
diversity in the manner such rights are allocated, imple-
mented, used and regulated (Burness & Quirk, 1979).
While this has allowed demand management solutions to
be tailored to local conditions, it has also created perverse
incentives. Appropriative water rights make it difficult to
shift water use away from agriculture; while doctrines of
beneficial use and private property penalize conservation
efforts (Collins, 2015). This makes it difficult to reduce
water use in agriculture. The doctrine of beneficial use
needs to be expanded to explicitly include water for the
environment.
Finally, Israel presents a case where both regulation and

market-based instruments have been deployed from the
inception of agriculture in the country towards maintain-
ing high irrigation efficiency for high-value agriculture.
Wastewater use in agriculture has increased and has
replaced freshwater, thus augmenting supplies without
increasing pressure on freshwater (Tal, 2017); while desali-
nation boosts drinking water supplies (Teschner et al.,
2013). However, Israel is a food importer, which impacts

water use outside its territorial boundaries, and its suc-
cesses may not be easily replicable.
The experiences from these four countries suggest that

sustaining agricultural production while reducing fresh-
water consumption requires going beyond regulatory and
market-based incentives that improve irrigation efficiency.
Choices pertaining to domestic production of crops might
secure a country’s freshwater sources but could have impli-
cations for water use beyond the territorial boundaries of
a country. Technological innovations that augment supply
are going to be important, but these must be appropriate
to local socioeconomic and ecological conditions, and a
major gap exists in this space.

2 INDIA: A SEEMINGLY
UNSTOPPABLE PROBLEMOF
GROUNDWATER DEPLETION

India is the world’s largest user of groundwater, the bulk of
it being used for irrigation and tapped through privately-
installed wells (Mishra et al., 2018). While surface water
projects were the focus of state investments in the mid-
20th century, borewell drilling technology has led to a
revolution in recent decades, to the point where India’s
groundwater resources are depleting, especially in the
north and west (Asoka et al., 2017), and increasingly in
the southern peninsula. Well drilling, motor pumps and
energy (electricity especially) have historically been heav-
ily subsidized for agricultural use in most Indian states,
with pumps rarely metered and drilling rarely regulated
(Shah et al., 2012; World Bank, 2010). Coupled with gov-
ernment procurement policies for water-intensive staples
such as rice and wheat that encourage its production, this
has resulted in groundwater decline (Badiani & Jessoe,
2019; Shah et al., 2012).
Most attempts to regulate groundwater abstraction in

India have focused on regulating the energy needed to
pump it, mainly by restricting supply and quality to
farmers either through rationing electricity supply or by
changing subsidies on diesel (Shah et al., 2008). In an
agricultural landscape characterized by millions of small-
holder farmers, regulating groundwater either through
regulatory methods that cap quantities or through meter-
ing and pricing of water and electricity has been regarded
as challenging to implement from a political, implemen-
tation and equity perspective (Bajaj et al., 2021; Dubash,
2007; Ghose et al., 2018; Ryan & Sudarshan, 2022; Sidhu
et al., 2020). Consequently, groundwater suffers from the
usual problems of open-access resources.
Private groundwater "development" was encouraged so

that farmers not served by public surface water schemes
might gain access to irrigation, which has been argued
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as being equity improving (Mukherji, 2020). However,
as groundwater declines, borewells run dry, and access
becomes limited to those who can afford to drill frequently
and deeper; dynamically, access to groundwater will likely
be inequitable, even as the costs of abstracting it increase
for all farmers (Dubash, 2002).
Recognizing this problem, federal and state govern-

ments are increasingly experimenting with positive solu-
tions or "carrots" to incentivize reductions in water
abstraction—rewarding desirable behaviors rather than
penalizing undesirable ones. Given the significant energy
subsidy burden of the government (Badiani et al., 2012;
Bassi, 2018); this approach is desirable for the state and
farmers. For example, farmers in Punjab and Gujarat have
been given entitlements of electricity for an agricultural
season, with the utility purchasing unused units (rebates)
to encourage reductions in pumping groundwater. While
such a program did not reduce groundwater pumping in
Gujarat (Fishman et al., 2016), it was successful in doing so
in Punjab (Mitra et al., 2022). Among other factors, the suc-
cess and failure of such programs will depend on whether
pump owners are also selling irrigation services to farmers
who do not own wells, a practice that is fairly widespread
in many states in India (Balasubramanya & Buisson, 2022;
Saleth, 2004).
At the same time, federal and state governments are

also exploring how solar irrigation, which is being pro-
moted to reduce the carbon footprint of agriculture, can
be implemented to provide incentives to farmers to reduce
groundwater pumping (Bassi, 2018). Since one of the chal-
lenges of switching farmers from fossil fuel to solar energy
is that the marginal cost of pumping with solar is zero,
connecting solar pumps to grids and paying farmers for
generating electricity and evacuating it into the grid is
viewed as a way to incentivize desirable behaviors (Kumar
et al., 2011; Shah et al., 2014). This is being pursued in solar
irrigation programs in several Indian states, including Kar-
nataka, Gujarat, Maharashtra and Rajasthan. However,
such incentives may not lead to reductions in ground-
water abstraction, as farmers could generate electricity
without reducing pumping, especially when tariffs offered
are modest. A preliminary analysis of such a scheme in
Karnataka found no reductions in groundwater abstrac-
tion, even though pump owners sold electricity to the grid
(Durga et al., 2021). Given the costs of connecting pumps
to grids, reducing groundwater overdraft through tariffs
offered to electric units evacuated from grid-connected
pumps may not be economically feasible, as Jadhav et al.
(2020) found inMaharashtra. Positive incentives may have
a role to play, but it is unlikely to solve the seemingly
unstoppable problem of groundwater depletion by itself.
Over the longer term, holistic policy approaches are

needed, and identifying themwill likely need a reexamina-

tion of the institutional dimensions of groundwater (and
water as a whole) in the Indian context. A multi-layered
integrated water resource regulatory system is needed
that builds upon participatory democracy in its smallest
administrative unit, and representative but transparent
and accountable democracy at larger scales (Task Group
on Water Policy, 2019). It is necessary that such a system
manages both surface and groundwater, as the two are part
of the same hydrological system (Srinivasan & Lele, 2017).
Water allocation (quotas) would come from the top (river
basin scale); and lower-level allocations within these quo-
tas and day-to-day management and monitoring would be
implemented at the milli-watershed, municipal ward and
village scales. To ensure equity, such irrigation allocations
may need to be delinked from land ownership and be based
instead on per capita needs, to accommodate the landless
who rent land (Joy & Paranjape, 2004).
Finally, agricultural procurement policies for water-

intensive crops such as rice, wheat and sugarcane that
guarantee a price to farmers will need to be reconsidered
to reduce both surface and groundwater use in agri-
culture (Devineni et al., 2022; Mukherjee et al., 2018).
Such changes are likely to have livelihood and income
implications for many farmers, who will need to be sup-
ported through such transitions (Baviskar & Levien, 2021;
Ceballos et al., 2021). Expanding the cultivation of less
water-intensive staples such as millets will likely need
extension and procurement support, coupled with cam-
paigns that encourage dietary changes to increase demand
for these crops.

3 CHINA:FROMDEMAND-SIDE
MANAGEMENT TO RETHINKING FOOD
SECURITY GOALS

While the share of water withdrawals for agriculture in
total water withdrawals has declined from 97% in 1949 to
62% in 2020 (Wang, Jiang, et al., 2020), agriculture has
started relying more heavily on groundwater since the
1980s, as competition over surface water has increased.
Around 83% of all wells were private in 2004, and the share
fell to 62% in 2016 due to an increase in public wells (Wang,
Zhu, et al., 2020). As groundwater-based irrigation has
expanded, groundwater levels have declined. This is espe-
cially the case in the North China Plain, where the share
of groundwater irrigated lands increased from 1% in 1950 to
67% in 2015 (Wang, Zhu, et al., 2020); accompanied by 34%
villages experiencing a groundwater decline of more than
1.5 m annually, and 31% experiencing a decline of between
.25 and 1.5 m and between 2005 and 2015.
China has moved from supply-side management to

demand-side management; with a focus on regulating
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total use and increasing water use efficiency (Wang, Jiang,
et al., 2020). Surface water institutions have been trans-
formed into water user associations (WUAs), sometimes
with contracted management; by 2016, almost 80% of vil-
lages had WUAs (Wang, Jiang, et al., 2020). In some
villages, water managers have been provided with incen-
tives, where they can earn higher incomes by reducing
water applications; these initially incentivized reductions
in applications which have since slowed down (from 40%
in 2000s to 20% in 2011; Wang et al., 2005, 2014).
China is aiming to increase irrigation prices, but there

are challenges. Since demand for irrigation is inelastic,
raisingwater prices is likely in conflict with the goal of rais-
ing farmer incomes (Q. S.Huang et al., 2010).Water is often
not metered, making it challenging to implement volu-
metric pricing; consequently, water fees are often collected
by area, which is often not closely related to actual water
use behaviors. An “increase price and provide subsidy”
scheme was piloted in Hebei Province, where farmers
were levied higher prices but were refunded post-harvest.
Groundwater irrigation prices was raised and collected
based on electricity use. The increased irrigation fees
were retained by water managers and refunded to farm-
ers post-harvest according to land area. This policy led to a
reduction in groundwater applications for wheat by 30%,
but implementation costs were high and a government
subsidy of 30% of irrigation fees was needed, making it fis-
cally difficult to scale and sustain such an approach (Wang
et al., 2016).
Since the early 2000s, China has been working to set

up a water rights system and piloting water trades. Trade
between regions and transfers between the agricultural
and industrial sectors, which are coordinated by local gov-
ernments, has been observed in pilot efforts (Wang, Jiang,
et al., 2020). Promoting water trade between small indi-
vidual irrigators has been difficult, as farmers were often
unaware that they had rights that could be traded (-).
When water rights were granted to farmers in the form of
a water certificate, implementation and monitoring costs
have been high.
To increase irrigation efficiency, the government has

launched a large program for upgrading, renovating,
and investing in water-saving technologies in large- and
middle-scale irrigation districts over the past two decades.
Between 2000 and 2017, the share of irrigated land adopt-
ing water savings technologies increased from 31% to 50%,
mostly in the form of canal lining and underground pipes;
drip and sprinkler adoption has been low (Wang, Jiang,
et al., 2020). While Q. Huang et al. (2017) found that
such technologies reduced crop water use and improved
the productivity of water, such technologies may not
always reduce water application as acreage might expand
for profit maximizers, or more profitable water-intensive
crops could be cultivated (Huffaker & Whittlesey, 1995;
Ward & Pulido-Velazquez, 2008).

Seasonal following is also being considered. This was
first piloted in Hebei province, and currently, 13 provinces
plan to pilot this approach (Deng et al., 2021). Farmers
are incentivized to change cropping pattern from winter
wheat and summermaize to summermaize alone; and are
paid to keep their fields fallow in the winter. The Hebei
pilot reduced wheat cropping area, and achieved 84% of
the water application reduction target; however, sustain-
ing such a scheme is fiscally expensive as few farmers are
able to find off-farm work and payments will have to be
continuously provided.
Despite these efforts,morewill need to be done to reduce

water applications in agriculture. China has relaxed its
goal of food security through domestic production (except
for major grains), and this is likely to ease pressure on
domestic water sources, but will have consequences for
water resources abroad, as those food items are imported
instead.

4 WESTERN UNITED STATES:WATER
RIGHTS FOR THE ENVIRONMENT NEED
TO BE STRENGTHENED

In the western US, surface water rights tend to fol-
low the prior appropriation doctrine (“first in time, first
in right”)—senior users may use their full allocation
before junior users (Dellapenna, 2011). Most senior users
are farmers. As populations in the western US have
expanded, municipalities have had to purchase water
rights for domestic and other uses, including water-right
claims ofNativeAmerican communities, from senior users
(Schaible & Aillery, 2012).
This system of surface water rights makes it challeng-

ing to reduce water use in agriculture. During a shortage,
higher value water uses (drinking water, hospitals) will
be curtailed (due to their juniority), while lower value
agricultural uses (hay, alfalfa) receive their full alloca-
tion (Sax et al., 2006). Since rights related to "water for
the environment" have been recognized recently (junior
rights), these also have to come as transfers from senior
right holders; most such transfers have been on short-
termarrangements, rather than permanent long-termones
(Scarborough&Lund, 2007). "Water rights for the environ-
ment" are among the first to lose access during scarcity, due
to their "juniority" (Garrick et al., 2011).
Groundwater rights in the western US are mostly cor-

relative, which means that regulations are written to treat
categories of water users equally (Babbitt et al., 2018). In
cases where water use restrictions are necessary, these are
generally applied equally across all users.
However, both surface and groundwater rights are sub-

ject to the beneficial use doctrine (“use it or lose it”),
where a water right may be revoked when it has not
been used for an extended period, to disincentivize spec-
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ulative and monopolistic behaviors (Anderson & Kraft,
2012). Beneficial use is a large impediment to incentiviz-
ing reductions in water in agricultural use as the doc-
trine effectively penalizes successful conservation efforts
(Williams, 1983).
A major challenge in reducing water use in agriculture

is data on actual water use. There is significant variabil-
ity in the percentage of wells metered; thus, measurement
errors are pervasive when considering agricultural water
use data at a field level. From an economic perspective,
even if measurement errors are mean zero, Jensen’s equal-
ity implies that mean-zero measurement error translates
to a positive welfare loss that is increasing in the standard
deviation of the error (Foster et al., 2020). If a binding regu-
latory reduction on agricultural water use at the field level
were implemented in the presence of measurement errors
in monitoring, this could lead to large welfare losses; mak-
ing it harder to reallocate water towards the environment
(Grantham & Viers, 2014).
In some states, large datasets on field-level agricul-

tural water use are available to download directly from
the internet, allowing researchers to perform a variety of
econometric and datamining exercises to find correlations
that are interesting and publishable. This access to data
does not require interacting with the people who collected
it, which runs the risk of researchers not being adequately
aware of the context and local conditions. From a policy
research perspective, a shift to context-light analysis car-
ries the risk of misinterpreting results, especially when
local rules and regulations are concerned, where there is
often a difference between how policies are written and
how they are actually implemented on the ground (Garrick
et al., 2011). One of the important challenges for further-
ing evidence-driven agricultural water policy in theUnited
States is the need for researchers to treat data and context
as complements and to invest time to develop institu-
tional connections at the same time as working to improve
analytical capacity.
Finally, the doctrine of beneficial use needs to be

expanded more robustly to explicitly include the environ-
ment as a “beneficial use,” so that water can be reallocated
for environmental amenities, especially in overallocated
basins (Garrick et al., 2011; Grafton et al., 2010).

5 ISRAEL: PARTNERSHIP BETWEEN
STATE, PRIVATE SECTOR AND FARMERS
FOSTERS INNOVATION

Since the 1980s, overall agricultural water use in Israel has
not increased, but agricultural production has continued
to grow rapidly, with a seven-fold increase in the output
of crops per unit of water (Kislev, 2013). This is due to

a couple of factors. Agriculture is highly productive, and
micro-irrigation technologies that were developed in the
country are almost ubiquitous (Raveh & Ben-Gal, 2016;
Yasuor et al., 2020). A substantial and growing portion of
the water used for irrigation is treated wastewater, which
has been gradually replacing freshwater as themain source
of irrigation since the 1970s (Aharoni & Cikurel, 2006).
Agriculture consumes a little more than half of all water
used in Israel, and of that, more than 60% is recycled,
brackish or captured from floods (Lipchin & Pennycock,
2015), one of the highest rates in the world. Several factors
have enabled Israeli irrigation to achieve these successes.
First, the public agricultural research and development

(R&D) system has actively worked with private sector
companies and with farmers since the early days of the
state, bolstered by an energetic public extension system
(that has been partially privatized in recent years); this
public-private R&D ecosystem is often credited for much
of the innovation in Israeli agriculture over the years (Tal,
2021). Israeli agriculture has evolved towards high-value
and highly profitable horticultural production, which sup-
ports investments in technologies that have substantial
costs. Low-value cereal crops are seldom irrigated at all
in Israel.
Second, all water resources have been publicly owned by

the state since 1959; water management is centralized; and
the government is able to regulate all water use, includ-
ing in agriculture (Ellis et al., 2022; Gelpe, 2010). All water
use is metered, and quotas and prices for extraction and
use are enforced and adjusted to reflect cost of supply and
scarcity values of both freshwater and wastewater (Slater
et al., 2020). Third, the high population density of the coun-
try results in water use in the urban and industrial sectors
to be similar in magnitude to agricultural usage, enabling
treated wastewater to form a large fraction of the supply of
water for agriculture (Friedler et al., 2006).
Whether the success of Israel can be replicated in or

transferred to other countries, especially low-and middle-
income ones (LMICS), is difficult to answer. In LMICs,
agriculture occupies a much larger share of overall water
demand, and urban and agricultural areas are geograph-
ically distant, making it expensive to transport treated
wastewater and limiting its ability to replace freshwater.
Israel’s micro-irrigations systems are likely to be expen-
sive, and unsuitable, for smallholder farmers in LMICs;
contextually appropriate technologies would need to have
lower costs, even if performance was somewhat reduced.
Without enforcing withdrawal restrictions or pricing
irrigation water, it is unlikely that irrigation-efficiency
improving technologies will be adopted. Finally, the role of
the Israeli state in fostering an environment of innovation
between the public and private sector and with farmers
cannot be emphasized enough.
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However, it is important to remember that Israel relies
on imports to supply most cereals, and consequently
imports high levels of virtual water to satisfy its needs
(Shtull-Trauring & Bernstein, 2018). Had the country
needed to produce its own cereal supply, the manner
in which water would have been used in agriculture;
and the ability to increase production without increasing
freshwater use; might have been different.
The risks of using wastewater in agriculture need to be

better managed (Lavee, 2010). Emerging evidence suggests
that long-term irrigation with treated wastewater results
in degradation of the soil structure (e.g., see Yasuor et al.,
2020); crop yields (Tal, 2016); and groundwater quality
(e.g., see Shalev et al., 2015). The health risks of consuming
vegetables irrigatedwith treatedwastewater are potentially
significant, and are an emerging policy concern that needs
attention and management (Assouline et al., 2015; Malchi
et al., 2014).
Whether Israel’s successes are sustainable is debatable.

Many of the country’s aquifers are falling in quality due to
intrusion of seawater and pollution from agricultural and
industrial sources; and addressing thiswill require desalin-
ization of wastewater (Tal, 2016). The Dead Sea continues
to shrink, mainly because of diversions from the Jordan
river (Yechieli et al., 2016). Internationally, water-sharing
agreements may need to be revisited for peace-keeping,
given the changes in population and technologies, which
will have implications for how Israel continues to invest in
technologies and innovation (Talozi et al., 2019).

6 DISCUSSION

The four cases highlight some key themes in manag-
ing irrigation under increasing water scarcity. Quantity
restrictions and pricing of irrigation water will need to be
undertaken; however, history, institutional capacity and
current politics will have a bearing on how successfully
this is carried out. On the technology front, field-based
technologies such as drip irrigation can form a comple-
ment to quantity restrictions and pricing; but water-saving
methods of cultivating cereals especially may need to be
incentivized for farmers to adopt them. Other techno-
logical innovations that augment freshwater supply are
needed, but these need to be appropriate to local socioe-
conomic and ecological conditions, and a major gap exists
in this space.
A country might secure its domestic water resources

through a change in crop production policy, but this will
have global implications. For example, withdrawing mini-
mum support prices onwheat and rice in India would help
reduce the over-production of these water-intensive crops
and reduce groundwater overdraft, but this will affect the

livelihoods of farmers, and the export of these commodi-
ties overseas. In contrast, as China’s food security policy
that emphasized food production sufficiency is relaxed
to reduce demand on domestic water sources, the coun-
try will import these commodities from other places, thus
affecting water use overseas. Israel’s ability to feed its pop-
ulation is already dependent on the water resources of
countries Israel imports grains from.
Climate change is going to make it more challenging

to manage irrigation. For example, higher variability in
rainfall and change in quantity of precipitation in Israel
implies that demand for irrigation will increase and buffer
use will become important. Irrigation will likely retreat in
portions of the western United States, and unirrigated part
of the eastern US will come under irrigation in the future;
institutions and water right regimes in these geographies
are currently inadequate for managing agricultural water
and will need to be strengthened to protect drinking water
rights and water quality. In the case of China, improv-
ing the adoption of drip and sprinkler systems, while
limiting expansion of cultivated area and changes in crop-
choice towards water-intensive crops through schemes
such as fallowing have promise, but will require fiscal
support from the state, while the off-farm sector is devel-
oped. In the case of India, climate change will increase
variability in a monsoon-dependent country by impacting
glaciers and the flow of rivers in the Indo-Gangetic Plain.
A system of centralized allocation of water, with those allo-
cations locally managed, will be needed to respond to this
challenge.
Finally, better data on water, especially at the farm

level, needs to be collected in India and China; identify-
ing innovative ways to collect data parsimoniously will be
particularly important. In the United States, where bet-
ter data is available, there is a risk of using this data
without sufficiently understanding the context and erro-
neously interpreting results, since researchers are often not
engaged with those who collected the data. In Israel, data
on water quality needs to be urgently collected, which is
an emerging concern in the policy space.
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