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A B S T R A C T   

This study examines the impacts of farmers’ drought-severity perceptions on two adaptation strategies—ex-ante 
use of drought-tolerant varieties and ex-post irrigation use—employing a large-scale survey data of maize farmers 
in northern China. The former is helpful for saving water while the latter may increase the intensity of water use 
in drought season. An endogenous switching probit model is employed to account for the potential selection bias 
and endogeneity of farmers’ drought-severity perceptions in regressions of adaptation strategies. The results 
show that perceiving increasing drought-severity might increase farmers’ probabilities of using drought-tolerant 
varieties (DTVs) by 8.1% on maize plots but lower the probability of irrigation by 15.1%. However, once the use 
of the DTVs is controlled for, the perception of drought-severity has no additional predictive powers for irri-
gation. Furthermore, the use of drought-tolerant varieties may reduce the probability of irrigation by 27.5%. The 
findings highlight the need for policymakers to enhance farmers’ perceptions and differentiate adaptation op-
tions and consider their interrelationships in allocating resources to maximise their effectiveness.   

1. Introduction 

Frequent and severe droughts with longer durations are the likely 
outcomes of increased climate variations for many countries (e.g. Leng 
et al., 2015; Calzadilla et al., 2013), which will negatively affect agri-
cultural productivity and farm household livelihoods. Identifying 
adaptation strategies to prevent and/or mitigate the negative effects has 
important implications for rural welfare and is an issue that policy-
makers must address. Farmers’ adaptations to drought risk are also key 
for food security, competitiveness of rural communities, environmental 
pollution, and resource depletion (Wang et al., 2021). The relatively 
large literature on adaptation strategies show that adaptations come in a 
wide variety of forms, such as crop choices, crop insurance, tillage, 
diversification, off-farm labour allocation, risk management strategies 
etc. (Smit and Pilifosova, 2001; Ding et al., 2009; Meraner and Finger, 
2019; Turvey and Kong, 2010). These strategies can differ by purpose-
fulness (autonomous vs planned), temporal scope (short- or long-term), 
spatial scope (individual, local, regional, national, or global), and form 
(technical, behavioural, financial, and institutional). One important way 
of differentiation is based on whether adaptations are implemented 

before (ex-ante adaptation) or after (ex-post adaptation) the occurrence 
of extreme weather events (Smit et al., 2000). 

Distinguishing between ex-ante and ex-post adaptations can improve 
design of climate policies and allocations of funds. Rural households in 
developing countries are among the most vulnerable to adverse impacts 
of climate change (Barbier and Hochard, 2018). They usually do not 
have access to emergency funds, credit or community resources and can 
only cope with negative shocks ex-post (Báez et al., 2017). Implementing 
ex-ante adaptations can be more beneficial and cost-effective for such 
groups. Simulations by Owens et al. (2004) show that reallocating funds 
from ex-post responses to drought shocks to ex-ante actions could raise 
household welfare. The relationships between ex-ante and ex-post ad-
aptations also provide important policy implications. For example, if 
ex-ante and ex-post adaptations are substitutes in terms of adaptive ac-
tions and ex-ante measures are more effective, additional resources 
should be allocated to ex-ante measures. However, only a few studies 
distinguish between ex-ante and ex-post adaptations (e.g. Hertel, Lobell, 
2014). 

Many studies also focus on identifying the factors that influence 
adaptation decisions (Deressa et al., 2009; Wolf et al., 2013; Chen et al., 
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2014; Huang et al., 2015; Wang et al., 2015; Alam et al., 2016; Hou 
et al., 2017; Dang et al., 2019; Islam et al., 2020). One such factor is the 
perception of increased climate variations including extreme weather 
events. Different studies have measured perceptions differently. The 
indicators constructed include perceptions of climate or drought trends 
and variability (e.g. Maddison, 2007; Rashid et al., 2014; Hou et al., 
2017), concerns of climate change impact (e.g. Shi et al., 2015), 
judgements of causes of climate change (e.g. Yu et al., 2013), and 
perceived local vulnerability (Spence et al., 2011). Lee et al. (2015) 
found that the perception of local temperature change was the strongest 
predictor of climate change risk perceptions in many African and Asian 
countries. Among the few studies that focus on farmers’ perceptions, 
measurements are more unified and often related to changes in tem-
perature and/or precipitation. For example, Salau et al. (2012) reported 
that 63% of the Nigerian farmers perceived rising temperature and 70% 
perceived erratic rainfall. Rashid et al. (2014) reported that farmers in 
Bangladesh perceived overall changes in rainfall patterns, temperatures, 
and frequency and intensity of cyclonic storms. 

Understanding climate change perceptions can be a critical step in 
enhancing adaptation capacity for several reasons. First, climate change 
perceptions can motivate the public to act to respond to climate change 
and to comply with policy measures (Shi et al., 2015; Yu et al., 2013). 
Spence et al. (2011) showed that respondents from the United Kingdom 
who perceived a greater local vulnerability to climate change impacts 
were more prepared to reduce their energy use. Hou et al. (2017) 
demonstrated that Chinese farmers who perceived increasing drought 
severity were more likely to adapt by using water-saving technologies. 
In India, by increasing the shared notion of risk and vulnerability, 
climate variability perceptions facilitated adaptive responses such as the 
formation of the Apple Growers’ Association (Vedwan, 2006). Second, it 
is possible to influence stakeholder perceptions through measures such 
as information campaigns. Hou et al. (2017) found that providing early 
warnings of droughts to Chinese farmers increases the likelihood of a 
perception of increased drought-severity by 20%. Third, there is room 
for improving stakeholders’ climate change perceptions. Hou et al. 
(2015) found that only 18% of the sample Chinese farmers had per-
ceptions of local temperature change that were consistent with the 
actual trend calculated with climate data recorded at meteorological 
stations. 

This study aims to analyze the linkages between farmers’ climate 
change perceptions in terms of drought severity and ex-ante and ex-post 
adaptations. In theory, the impacts of farmers’ drought-severity per-
ceptions on their ex-ante and ex-post adaptations can be derived,1 based 
on the expected utility model, by referring the studies of Foudi and 
Erdlenbruch (2012), Lehmann, N. and Finger (2014) and Jianjun et al. 
(2015). While previous studies have focused on the relations between 
farmers’ perceptions and adaptation strategies (e.g. Spence et al., 2011; 
Fosu-Mensah et al., 2012; Comoé et al., 2014), few analyses empirically 
investigate the possible difference in the impacts of perceptions on 
ex-ante and ex-post adaptations and particularly explore the impact of 
using ex-ante adaptation strategies on the use of ex-post adaptation 
strategies. In practice, farmers have many adaptation strategies to 
drought risks, for instance, adopting new technology, planting new crop 
varieties, purchasing crop insurance, crop diversification, investing in 
irrigation infrastructure (Jianjun et al., 2015). This study focuses on the 
use of drought-tolerant varieties and irrigation, as they are the most 
direct related measures with water. The study on these two strategies 
helps better understand the design of agricultural water-saving strate-
gies under drought risks. To achieve the objectives, a large-scale farm 
survey data in China were applied in this study. An endogenous 
switching probit model is used to solve the potential endogeneity of 

farmers’ perceptions in their decision process. 
The rest of the paper is organised as follows. Section 2 presents the 

data sources and the employed methods. Section 3 reports the descrip-
tive statistics of farmers’ drought-severity perceptions and their ex-ante 
and/or ex-post adaptations, and also reports the estimation results of 
empirical models. The final section concludes with major findings and 
policy implications. 

2. Materials and methods 

2.1. Data sources 

The data used in this study are from a nationally representative 
survey conducted at the end of 2012, which covers nine provinces in 
China’s five major grain-producing regions. The spatial distributions of 
water resources are not even in China. Although south China has rela-
tively abundant water resources, north China is one of the most water- 
scarce areas worldwide and is vulnerable to droughts (Ji et al., 2010). 
Therefore, this study only includes sample provinces located in north 
China: five provinces in North China Plain (Hebei, Henan, Shandong, 
Anhui, and Jiangsu) and Jilin province in Northeast China. Overall, 
these six provinces produced over 40% of China’s maize in 2015 ac-
cording to China’s national statistical data. 

In each sample province, we first identified all the counties that 
experienced one or more drought years as well as normal years during 
the 2010–2012 period. China’s national standard for natural disasters 
established by the China Meteorological Administration classifies the 
severity of drought into four categories: most severe (4), severe (3), 
moderate (2), and small (1). A drought year is defined as a year during 
which one or more level 3 or 4 droughts have occurred, while other 
years are categorised as normal years. Three counties were then 
randomly selected from all the counties that experienced both drought 
and normal years. 

Within each county, townships were stratified into three groups 
based on the share of irrigable land areas and the degree of reliability of 
irrigation water supply, as assessed by the county’s Water Conservancy 
Bureau. Random selection of one township, three villages in that 
township, and ten farm households from each village, was conducted, 
respectively. For each sample household, two plots were randomly 
selected from all the plots that were cultivated during both the drought 
and normal years. Plots that grew the same crop in both years were given 
higher priority of selection. Only sample households that grew maize 
were included. Each maize household may have one or two plots that 
were surveyed. The final sample included 1695 maize plots from 1058 
households in 123 villages from 14 counties. 

During the survey, household heads and village leaders were inter-
viewed with separate questionnaires. Household heads were asked to 
report if they thought drought-severity (i.e. the number of days that 
drought lasted) over the past decade had increased, decreased, or shown 
no observable change. For each selected plot, we asked the respondents 
whether they used DTVs and how many times they irrigated maize. 
These questions were asked for both the normal and drought years. 
Table A.5 in Appendices A shows farmers’ perception of drought- 
severity and the adoptions of DTVs and irrigation under the different 
perceptions. Obviously, when farmers perceive increasing drought 
severity, their adoptions of DTVs and irrigation are significantly 
different with others. Thus, farmers perception of drought can be further 
treated as dummy variable—perception of increasing drought severity 
(1 =yes, no=others). While there are 8 farmers reporting no observable 
change of drought severity, these samples only occupy less than 1% of 
total sample and will not lead to bias results due to assigning into other 
group. The survey also collected information on farmers’ characteristics 
(e.g. age, education, gender, and family size), farm characteristics (e.g. 
farm size and distance to the nearest agriculture supply shop). Village 
leaders were interviewed for gaining information on village character-
istics (e.g. proportion of irrigable land, and availability of drought- 

1 A detailed theoretical framework regarding the impacts of farmers’ 
drought-severity perceptions on their ex-ante and ex-post adaptations can be 
found in Appendices B. 
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mitigation support in the village). 

2.2. Methods 

This section presents the methods to examine how farmers’ drought- 
severity perceptions influence their adaptive actions. In our analysis, we 
can control for many factors that have been identified to influence 
farmers’ perceptions of and their adaptation to climate change, such as 
demographic and socio-economic factors, geography, and access to 
extension service (Rashid et al., 2014; Hou et al., 2015; Lee et al., 2015; 
Leiserowitz, 2007; Akter and Bennett, 2011; Deressa et al., 2011; Dang 
et al., 2014). However, there might still be unobservable or missing 
factors due to a lack of information (Oster, 2019). For example, cogni-
tive and psychological factors, such as fatalism, values, and cultural 
worldviews can shape perceptions of climate change and adaptive be-
haviours (Shi et al., 2015; Spence et al., 2011; Lorenzoni and Pidgeon, 
2006; Wolf et al., 2013; Weber, 2010; Grothmann and Reusswig, 2006). 
Agricultural water related policies (e.g. pricing, quotas etc.) may also 
affect farmers’ DTVs use and irrigation use (Lehmann and Finger, 2014), 
while the policy effect can be controlled by the township dummy vari-
ables as the implementation of related policies are supposed to be same 
in a township. Past exposure to extreme weather events is another such 
factor (Spence et al., 2011). Besides, in regressions on adaptive actions, 
perception may be endogenous and reverse causality may exist. Past use 
of adaptive strategies may modify farmers’ perception because drought 
impacts may be altered by adaptation. It is essential to account for the 
potential perception endogeneity in case one or more important factors 
are excluded. Furthermore, the coefficients of explanatory variables, 
which measure their effects on adaptive actions, may vary among 
farmers that perceive increasing or lower drought-severity. 

To address above issues, following previous studies (Lokshin and 
Glinskaya, 2008; Gregory, Colemanjensen, 2013; Ayuya et al., 2015), we 
employ the endogenous switching probit model (ESPM) based on the 
instrumental variable and full information maximum likelihood 
methods. The ESPM model takes into account unobserved variables that 
could simultaneously affect farmers’ drought-severity perceptions and 
adaptive actions (Lokshin and Glinskaya, 2008). The instrumental var-
iable approach could address the potential endogeneity issue for 
farmers’ drought-severity perceptions in explaining their adaptive ac-
tions. The full information maximum likelihood method (FIML) is used 
to simultaneously estimate the equations of farmers’ drought-severity 
perceptions and adaptive actions to obtain consistent standard errors 
of the estimates (Lokshin and Sajaia, 2011). Also, the ESPM has one 
advantage that is the possibility of deriving probabilities in counter-
factual cases for the impacts of farmers’ drought-severity perceptions on 
their adaptations by simulating the average treatment effect (Lokshin 
and Sajaia, 2011; Ayuya et al., 2015). 

While there are also some other approaches such as propensity score 
matching (PSM) approach or inverse probability weighted regression 
adjusted (IPWRA) estimators which could be used to estimate the impact 
of farmers’ drought-severity perceptions on their adaptations using 
observational data, these approaches can not control the selection bias 
led by unobservable factors (Oster, 2019) and hence are not superior to 
the ESPM in addressing the mentioned issues. Hence, in this section, the 
ESPM is used to estimate the perception effects on ex-ante and ex-post 
adaptations. 

2.2.1. Impact of drought-severity perceptions on farmers’ adaptations 
A two-stage approach is used to model farmers’ drought-severity 

perceptions and their influence on ex-ante and ex-post adaptations to 
drought. In the first stage, the latent variable Pi*, measuring the drought- 
severity perception of farmer i, is expressed as a function of observable 
variables as:  

Pi* = z′iα + εi, Pi = 1(Pi* > 0)                                                     (2.1) 

where 1(•) is an indicator function and Pi is a binary variable that equals 
one if Pi* > 0 and zero otherwise. We divide farmers into two groups 
based on their perceptions: perceivers of increasing drought (Pi = 1) are 
farmers who thought drought-severity had increased, and non-perceivers 
of increasing drought (Pi = 0) are farmers who thought it had decreased or 
shown no observable change over the past decade. Farmers who re-
ported they had no judgement of the trend were also put into non- 
perceivers. The vector zi contains variables that affect farmers’ 
drought-severity perceptions and εi is the error term with a mean zero. 

In the second stage, an endogenous switching framework is used to 
model the perception influence on adaptive actions wherein farmers 
face the two regimes defined in Eq. (2.1): perceivers (Pi = 1) and non- 
perceivers (Pi = 0).  

V1im* = x′
1imθ1 + u1i, V1im = 1(V1im* > 0) if Pi = 1                        (2.2a)  

V0im* = x′
0imθ0 + u0i, V0im = 1(V0im* > 0) if Pi = 0                       (2.2b) 

where Vim is a binary variable that equals one if DTVs or irrigation is 
used on plot m of farmer i. The subscripts 1 and 0 represent perceivers 
and non-perceivers, respectively. Although the information on irrigation 
number is available, among all irrigated maize plots, more than 80% 
were only irrigated once or twice. Therefore, the irrigation number 
cannot be treated as a continuous variable. It is also difficult to run an 
endogenous switching model with ordinal dependent variables. There-
fore, a dummy variable that indicates a plot is irrigated is used as the 
dependent variable to examine the impact of climate change perception 
on irrigation as an adaptive action. 

The ESPM has been used in many previous studies that have binary 
selections and binary outcomes (Lokshin and Glinskaya, 2008; Gregory, 
Colemanjensen, 2013; Ayuya et al., 2015; Min et al., 2017). We follow 
the procedure developed by Lokshin and Sajaia (2011) and account for 
the potential endogeneity of drought-severity perceptions by estimating 
a simultaneous system of Eqs. (2.1), (2.2a), and (2.2b) using full infor-
mation maximum likelihood estimation (FIML). The error terms in the 
above-mentioned equations are assumed to be jointly normally distrib-
uted with zero means. As V1im* and V0im* are never observed for the 
same farmer/plot, the covariance between u1i and u0i is not defined. 
However, the estimation can still be carried out using the bivariate 
normal distribution between u1i and εi and between u0i and εi, with their 
correlations defined as ρ1 and ρ0, respectively (Lokshin and Sajaia, 
2011). 

The estimation results of ESPM can be used to calculate the effects of 
increasing drought-severity perceptions on the use of adaptation stra-
tegies. Following Lokshin and Sajaia (2011), Ayuya et al. (2015), and 
Min et al. (2017), the effect of the treatment of “increasing 
drought-severity perception” on the treated (TT) is:  

TT(xim) = Pr(V1im =1| Pi = 1, xim) – Pr(V0im =1| Pi = 1, xim)             (2.3) 

where Pr(V1im =1| Pi = 1, xim) and Pr(V0im =1| Pi = 1, xim) are the 
probabilities of using an adoption strategy on a plot by a farmer who 
perceives and one who does not perceive increasing drought-severity, 
respectively. It is constructed using the FIML estimation results. Eq. 
(2.3) measures the effect of increasing drought-severity perceptions on 
the likelihood of using adaptation strategies among perceivers. The 
average treatment effect on the treated (ATT) can be imputed by aver-
aging Eq. (2.3) over the sample observations that perceived increasing 
drought-severity (Pi = 1):  

ATT = ΣTT(xim)1(Pi = 1)/NPi = 1                                                     (2.4) 

where 1(Pi = 1) is the indicator function for perceivers and NPi = 1 is the 
number of observations with Pi = 1 (perceivers). Similarly, ATT can also 
be imputed for any subgroup of the sample by averaging Eq. (2.3) over 
all observations in that subgroup. The estimates of ATT for subgroups 
provide an opportunity to detect the heterogeneous treatment impacts 
among subgroups and thereby can derive somewhat policy implications. 
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Thus, usually, heterogeneity analysis is conducted by choosing an 
explanatory variable of policy relevance and estimating the treatment 
effects for subsamples defined by this variable. In the empirical analysis, 
we assess ATTs for subgroups defined by access to irrigation, weather 
conditions (drought or normal year), farm size, availability of drought- 
mitigation support, and distance from plot to the house. 

The vector xim contains variables that may influence either costs or 
benefits of adaptation strategies. Five groups of variables are used. The 
first measure plot characteristics such as plot size, soil type, and distance 
to a farmer’s house, as well as whether a plot has access to irrigation. 
The size of a plot affects the extent of the exposure to weather risks in 
agricultural production. It can also affect the benefit or the cost of the 
adaptive action. Farmers with more fertile soil may be better buffered 
from the negative impacts of droughts. Therefore, they may be less likely 
to take adaptive actions. The second group measures farm characteris-
tics such as age, gender, and education of the household head, family 
size, and share of family members that are engaged in off-farm work. All 
these variables affect farmers’ adaptive decisions. For example, access to 
off-farm employment opportunities can reduce the impact of shocks to 
agricultural production on rural households, and thus, may affect their 
incentives to take adaptive actions (Giles, 2000). Income from off-farm 
jobs can be also used as an adaptation investment in the agricultural 
sector. The third group measures farm characteristics such as farm size 
and distance to the nearest agriculture supply shop. The fourth group 
includes two village-level variables. The first variable indicates the 
availability of drought-mitigation support in the village. 
Drought-mitigation support in rural China can include technical assis-
tance to farmers to set up adaptive measures, post-disaster cash, or 
in-kind assistance. Extension services that provide technical support for 
drought-mitigation can be an important means for farmers to gain in-
formation on the likelihood of droughts as well as technical knowledge 
of mitigation strategies. Post-disaster assistance, however, may hamper 
farmers’ incentive to be proactive. The share of irrigable land in the 
village reflects the overall irrigation conditions of the village. Current 
weather conditions such as levels of precipitation and temperature may 
affect the likelihood of using adaptation strategies. This is particularly 
relevant for ex-ante actions. The fifth group includes a year dummy that 
equals one for a drought year and township dummies. Data on weather 
variables are only available at the county level in China. The use of the 
township and year dummies in the regression helps control for current 
weather conditions to a large extent. In the empirical analysis that ex-
amines the use of irrigation as an adaptation strategy, only plots with 
access to irrigation are included. The variable that indicates a plot has 
access to irrigation is thus removed from xim. Table A.1 in Appendices A 
reports summary statistics of the explanatory variables used in this 
study, while Table A.2 in Appendices A compares the means of the 
explanatory variables contained in xim between plots that used an 
adaptation strategy (DTVs or irrigation) and those that did not. 

For the ESPM to be identified, the vector zi should contain at least 
one variable that is not in xim and can be used as the exclusion restric-
tion. For each farmer i, we average the drought-severity perceptions of 
other farmers in the same village, APi. Such a cluster-effect instrument 
has been used in previous studies (Ji et al., 2010; Zhao et al., 2014). 
Farmers’ perceptions of climate change are often influenced by peers. 
However, perceptions of peers are unlikely to directly influence a 
farmer’s adaptation decisions except through their influence on the 
farmer’s perception. Therefore, APi is a potential candidate for a selec-
tion instrument. It is noticed that in a same township, farmers normally 
share the agricultural extension services and supplier and output mar-
kets, accordingly they may also directly influence respective activities 
such as irrigation and seed choice. This means that the adaptation 
strategies of peers may also affect a farmer’s adaptation decision. 
Nevertheless, this situation does not matter for the estimation using the 
perception of peers as an instrumental variable. Following previous 
studies (Di Falco et al., 2011; Ayuya et al., 2015; Huang et al., 2015; 
Parvathi and Waibel, 2016), falsification tests are performed. Results in 

Table A.3 of Appendices A support the validity of the APi variable as a 
selection instrument. The coefficient of the APi variable is statistically 
significant when perception is the dependent variable (column 1). In 
columns 2 and 3, where only non-perceivers are included (Pi = 0) and 
the dependent variables are the two adaptation strategies (the use of 
DTVs and irrigation), the coefficients of the APi variable are not statis-
tically significant. Additionally, weak-instrument tests using F statistics 
reject the null hypothesis of a weak-instrument. 

2.2.2. Relationship between the use of DTVs and irrigation 
The analysis of the relationship between ex-ante and ex-post adap-

tations can yield useful policy advice. If DTVs and irrigation were sub-
stitutes in preventing/mitigating the negative impacts associated with 
droughts, policymakers could focus on just one instead of both strate-
gies. For example, in areas with scarce water resources, the use of DTVs 
may be preferred due to the additional benefit of water conservation. For 
farmers without access to irrigation, planting DTVs also has the 
advantage of not requiring a high upfront fixed investment, unlike the 
development of new irrigation facilities. 

The relationships between DTVs and irrigation can be assessed by 
examining if the decision to use one strategy is influenced by the use of 
another strategy. However, the use of one strategy is likely to be 
endogenous in the regression on the decision to use another strategy. 
This may be the case even when we examine the influence of an ex-ante 
strategy on an ex-post strategy. Although the use of DTVs precedes the 
irrigation decision temporally, it may still be an endogenous variable. 
This can happen due to the omission of factors such as past exposures to 
droughts that can influence both decisions. A valid instrumental variable 
(IV) would only affect farmers’ decisions to use DTVs. The usage rate of 
DTVs among other farmers in the same village is employed to instrument 
for a farmer’s DTV use. This is likely to be influenced by peers. Affected 
by peers’ adoption of DTVs, a farmer may have a similar adoption de-
cision to DTVs before seeding maize; hereafter, the farmer’s DTVs 
adoption situation further influences the decision to irrigation during 
the growing season of maize. The results of falsification tests valid this 
proposed IV empirically too. 

Two models are used, namely, a probit model (where the dependent 
variable is a dummy variable that indicates a plot is irrigated and DTV 
use is an explanatory variable) and the ESPM. In the first stage, a se-
lection equation is run with DTV use as the dependent variable. In the 
second stage, an endogenous switching model is employed to model 
DTV use impact on irrigation decisions where farmers face two regimes: 
using or not using DTVs. 

3. Results and discussion 

3.1. Descriptive statistics 

Although some studies predict the changes in drought-severity, 
duration, and frequency in China (e.g. Leng et al., 2015), there is no 
consensus on this among the sample farmers. Most farmers (71%) 
perceive increasing drought-severity (Table A.2 in Appendices A). 
Sample data also reveal a sharp difference in the use rates of the two 
adaptation strategies with DTVs being used on 26.8% of the plots. Irri-
gation is more widely used. About 76% of the plots have access to irri-
gation, of which, about 79% were irrigated during the survey years. 

Table A.4 in Appendices A shows that the difference in shares of 
maize plots with DTVs in normal and drought years (26.8% and 26.4%, 
respectively) is not statistically significant. The same is the case when 
farmers are divided into perceivers and non-perceivers. These observa-
tions offer support for treating DTVs’ use as an ex-ante adaptation 
strategy. The decision is typically made before farmers observe the 
actual weather conditions during the growing season, and thus, is less 
correlated with the occurrence of droughts. In contrast, DTV use seems 
to be positively correlated with perceptions of increasing drought- 
severity. In normal years, DTVs are used on 29.2% and 21.5% of plots 
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among farmers that perceive increasing drought-severity and those that 
perceive the same or declining drought-severity, respectively. The 7.7% 
difference is statistically significant at 1%. In drought years, the same 
pattern is observed: the use rate is 8% higher among perceivers and the 
difference is statistically significant at 1%. 

Unlike DTV use, irrigation use varies with weather conditions. 
Among all maize plots with access to irrigation, the share of irrigated 
plots is 3% higher in drought years. The difference is statistically sig-
nificant at the 10% level and provides some support for treating irri-
gation as an ex-post adaptation to drought in maize production. Non- 
perceivers are more likely to use irrigation as an ex-post adaptive strat-
egy. Among perceivers, the shares of irrigated plots do not differ much 
between normal and drought years. The share of irrigated plots among 
non-perceivers is 8.4% higher in drought years than normal years. The 
difference is statistically significant at 1% level. 

The decisions regarding ex-post and ex-ante adaptations might be 
correlated. In both normal and drought years, DTV non-users irrigated a 
larger share of their plots than users. The difference, however, is only 
statistically significant in normal years and can be mostly attributed to 
farmers significantly cutting back irrigation on plots with DTVs in 
normal years. Among plots without DTVs, the irrigated share is only 
1.8% lower in normal years than drought years and the difference is not 
statistically significant. In contrast, among plots with DTVs, the irrigated 
share is 7.2% lower and the difference is statistically significant at 5%. 
These observations also indicate that the effects of the ex-ante DTV use 
(and maybe other ex-ante strategies) on the ex-post irrigation use work 
mostly to reduce irrigation. This is probably because, in areas with se-
vere water shortages, such as north China, farmers often do not have the 
option to increase irrigation even in normal years. 

3.2. Estimation results 

3.2.1. Farmers’ drought-severity perceptions and the use of DTVs 
Table 1 reports the estimation results of the models for DTV use. The 

results of estimating ESPM with FIML are reported in columns 2–4 
corresponding to Eqs. (2.1), (2.2a), and (2.2b). For both the probit 
model and ESPM, the Wald χ2 test statistic is statistically significant and 
different from zero, suggesting the joint significance of all explanatory 
variables. 

The test results justify the use of ESPM. The Wald χ2 test of inde-
pendent equations rejects the null hypothesis of the joint independence 
of Eqs. (2.1), (2.2a), and (2.2b). Thus, the use of ESPM with FIML is more 
efficient than estimating the equations separately. In particular, the 
estimated correlation between the errors of Eqs. (2.1) and (2.2a), ρ1, is 
statistically significant and is 0.439 in magnitude. This provides 
empirical evidence of a sample selectivity bias as drought-severity 
perception and DTV use decisions are correlated, at least among per-
ceivers. Estimation should thus account for such endogenous switching. 

Column 2 in Table 1 reports the estimation results for the impact on 
farmers’ perceptions denoted in Eq. (2.1). The results show a strong 
influence of peer perceptions on a farmer’s drought-severity perception. 
The IV coefficient, which is the average of the other farmers’ perceptions 
in the same village, is positive and statistically significant at 1%. It is also 
the largest compared to coefficients of other explanatory variables. 
Several farm and farmer characteristics also shape farmers’ drought- 
severity perceptions. Having loam soil reduces the likelihood of 
increasing drought-severity perceptions because better soil reduces the 
negative impacts of past droughts. Older farmers are less likely to 
perceive increasing drought-severity. Education has the opposite effect 
on perception. Younger and more educated farmers may be more 

Table 1 
Estimation results of drought-severity perception and the use of drought-tolerant 
varieties.   

Endogenous switching probit model 

Variable  Use of drought-tolerant varieties 

Drought- 
severity 
perception 

Drought- 
severity 
perception= 1 

Drought- 
severity 
perception= 0 

Drought-severity 
perception (1 =Yes;0 
=Otherwise)    

IV for Perceptiona 2.318***    

(0.162)   
Plot size (ha) 0.004 –0.545*** –0.697***  

(0.119) (0.150) (0.219) 
Soil type 

(baseline=sandy)    
Loam (1 =Yes;0 
=Otherwise) 

–0.344*** –0.213** –0.123  

(0.081) (0.097) (0.258) 
Clay (1 =Yes;0 
=Otherwise) 

–0.065 0.014 0.068  

(0.083) (0.102) (0.247) 
Source of irrigation: 

(baseline=surface 
water)    

Underground (1 =Yes;0 
=Otherwise) 

-0.084 -0.315*** 0.556*  

(0.083) (0.110) (0.310) 
No irrigation (1 =Yes;0 
=Otherwise) 

0.012 -0.201* 0.456  

(0.106) (0.116) (0.406) 
Distance from plot to 

house (km) 
0.023 0.089** –0.142*  

(0.033) (0.038) (0.080) 
Gender of respondent (1 
=Male;0 =Female) 

0.0715 –0.084 0.616***  

(0.0905) (0.106) (0.214) 
Age of respondent 

(years) 
–0.007** 0.001 0.019***  

(0.003 (0.004) (0.007) 
Education of respondent 

(years) 
0.020** 0.030*** –0.047**  

(0.009) (0.011) (0.023) 
Number of family 

members 
0.032** 0.060*** 0.099  

(0.015) (0.020) (0.049) 
Share of family members 

with off-farm work (%) 
–0.002* –0.004** 0.010***  

(0.001) (0.002) (0.003) 
Farm size (ha/person) 0.191* –0.054 1.119**  

(0.113) (0.104) (0.499) 
Distance to the nearest 

agricultural shop (km) 
–0.001 0.022*** –0.107***  

(0.007) (0.008) (0.021) 
Drought mitigation 

support (1 =Yes;0 
=No) 

-0.152 –0.062 0.829***  

(0.092) (0.119) (0.284) 
Share of irrigable land in 

the village 
–0.106 0.363** –1.001***  

(0.133) (0.154) (0.327) 
Agricultural insurance (1 
=Yes;0 =No) 

-0.031 0.115 -0.427  

(0.117) (0.160) (0.356) 
Drought year (1 =Yes;0 
=Otherwise) 

0.002 –0.010 –0.035  

(0.051) (0.064) (0.126) 
Township dummies Controlled Controlled Controlled 
Constant –0.609** -1.843*** –3.639***  

(0.320) (0.380) (0.885) 
ρ1 / ρ0  0.439*** –0.145   

(0.180) (0.247) 
N  3390  
Wald χ2  34,083.97***  

Wald χ2 test of 
independent equations 
(ρ1 = ρ0 = 0)  

4.85*  

Notes: a. The average drought-severity perception of other farmers in the same 
village is used to instrument for the variable “Drought-severity perception”. b. 
414 observations are dropped because successes are perfectly predicted. c. *, **, 
*** denote levels of statistical significance at 10%, 5%, and 1%, respectively. d. 
Robust standard errors are reported in parentheses. 
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informed and aware of the notion of climate change, and thus, pay more 
attention to changes in drought-severity. Farmers in larger families are 
more likely to perceive increasing drought-severity. As the coefficient 
measures the effect of one additional member and is not large, the 
practical impact of family size on perceptions is unlikely to be large. 
Farm size is positively correlated with farmers’ increasing drought- 
severity perception. This may be because larger farms are more 
exposed to variations in weather conditions and experience larger 
negative impacts of weather shocks. Thus, any changes in weather 
conditions may be more evident to farmers with larger farms. The family 
members’ share with off-farm work is negatively correlated with 
farmers’ increasing drought-severity perception. Off-farm employment 
may reduce the likelihood of increasing drought-severity perception in 
several ways. It may divert farmers’ attention away from their farms. 
Income from off-farm work can also offset some of the negative drought 
impacts. One surprising result is that drought-mitigation support does 
not seem to influence farmers’ perception. Perhaps, providing infor-
mation about climate change is not part of the extension services 
currently offered in rural China. 

The results of factors that may drive DTV use justify the use of an 
endogenous switching model (Table 1, columns 3 and 4). The signs, 
magnitudes, and/or levels of statistical significance of the coefficients of 
many explanatory variables differ between perceivers and non- 
perceivers. The biggest differences lie in the effects of gender, farm 
size, and the availability of drought-mitigation support. The coefficients 
of these variables are small and not statistically significant among per-
ceivers but much larger and statistically significant among non- 
perceivers. Increasing drought-severity perception makes male and fe-
male farmers equally likely to use DTVs. It also makes farmers with 
larger or smaller farms equally likely to use DTVs. Farmers are likely to 
use DTVs regardless of the availability of drought-mitigation support. In 
contrast, among non-perceivers, male farmers, farmers with larger 
farms, and farmers in villages with drought-mitigation support are more 
likely than others to use DTVs. Another difference is the effect of the 
irrigable land share in the village. Its coefficient is positive among per-
ceivers but negative among non-perceivers. The difference in the co-
efficients is large and statistically significant. Non-perceivers in villages 
with better irrigation conditions are less likely to use DTVs, which makes 
sense. The positive correlation between better irrigation conditions and 
DTV use among perceivers is difficult to interpret and requires further 
investigation. The results confirm the existence of heterogeneity be-
tween perceivers and non-perceivers in the sample households and 
reveal the interactive effects between drought-severity perception and 

other explanatory variables. 
The estimation results of the ESPM are employed to perform a 

counterfactual analysis to quantify the impacts of farmers’ drought- 
severity perception on the DTV use likelihood. The ATT reported in 
Table 2 shows that among perceivers, the treatment of “perceiving 
increasing drought-severity” increases the probability of using DTVs by 

Table 2 
Average treatment effect of increasing drought-severity perceptions on the use of 
drought-tolerant varieties.  

Categories ATTa Absolute t-value 

All sample 0.081 * ** 12.012 
Access to irrigation   
Yes 0.075 * ** 10.258 
No 0.098 * ** 6.379 
Weather conditions  
Normal year 0.082 * ** 8.587 
Drought year 0.080 * ** 8.397 
Farm size   
Small (0–0.09 ha/person) -0.002 0.202 
Medium (0.09–0.2 ha/person) 0.031 * ** 3.278 
Large (> 0.2 ha/person) 0.225 * ** 18.413 
Drought-mitigation support   
Yes 0.068 * ** 8.716 
No 0.149 * ** 15.170 
Distance from plot to house   
Near (0–0.5 km) 0.049 * ** 5.795 
Medium (0.5–1 km) 0.076 * ** 6.099 
Far (> 1 km) 0.153 * ** 9.049 

Note: a. Average treatment effect on the treat. b. *, **, and *** denote levels of 
statistical significance at 10%, 5%, and 1%, respectively. 

Table 3 
Estimation results of drought-severity perception and irrigation (only plots with 
access to irrigation).  

Dependent variable Endogenous switching probit model 

Drought- 
severity 
Perception 

Irrigation 

Drought- 
severity 
Perception = 1 

Drought- 
severity 
Perception =
0 

IV for Perceptiona 2.263***    

(0.181)   
Plot size (ha) 0.063 0.016 0.102  

(0.170) (0.334) 2.263*** 

Soil type (baseline=sandy)   
Loam (1 =Yes;0 =Otherwise) -0.237*** 0.539*** (0.181)  

(0.091) (0.166) 0.063 
Clay (1 =Yes;0 =Otherwise) -0.038 0.688*** (0.170)  

(0.093) (0.169) (0.245) 
Source of irrigation: (baseline=surface water)   
Underground (1 =Yes;0 
=Otherwise) 

0.055 0.140 0.079  

(0.090) (0.132) (0.174) 
Distance from plot to house 

(km) 
-0.016 0.231*** 0.153*  

(0.042) (0.078) (0.090) 
Gender of respondent (1 
=Male;0 =Female) 

0.091 0.050 0.969***  

(0.101) (0.156) (0.336) 
Age of respondent (years) -0.007** -0.005 0.001  

(0.003) (0.005) (0.007) 
Education of respondent 

(years) 
0.009 0.029* -0.031  

(0.010) (0.015) (0.022) 
Number of family members 0.026 0.049* 0.052  

(0.017) (0.026) (0.039) 
Share of family members with 

off-farm work (%) 
-0.001 0.003 -0.002  

(0.001) (0.002) (0.003) 
Farm size (ha/person) 0.473** 0.363 -0.114  

(0.215) (0.302) (0.587) 
Distance to the nearest 

agricultural shop (km) 
0.006 -0.023* 0.003  

(0.010) (0.014) (0.022) 
Drought mitigation support (1 
=Yes;0 =Otherwise) 

-0.049 -0.116 -0.182  

(0.101) (0.189) (0.243) 
Share of irrigable land in the 

village 
-0.291* -0.296 -0.476  

(0.173) (0.217) (0.310) 
Agricultural insurance (1 
=Yes;0 =Otherwise) 

-0.008 -0.073 0.641  

(0.144) (0.458) (0.422) 
Drought year (1 =Yes;0 
=Otherwise) 

0.001 0.010 0.445***  

(0.057) (0.087) (0.122) 
Township dummies Controlled Controlled Controlled 
Constant -0.626* 6.326 1.028  

(0.370) (13,278.407) (0.812) 
ρ1 / ρ0  0.300 0.335   

(0.284) (0.253) 
N  2571  
Wald χ2  470.19 * *  
Wald χ2 test of independent equations (ρ1 = ρ0 =

0) 
2.80  

Notes: a. The average drought-severity perception of other farmers in the same 
village is used to instrument for the variable “Drought-severity perception”. b. *, 
**, *** denote levels of statistical significance at 10%, 5%, and 1%, respectively. 
c. Robust standard errors are reported in parentheses. 
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8.1%. If perceivers did not perceive increasing drought-severity, their 
likelihood of using DTVs would be lower by 8.1%. As currently, DTVs 
are used on only 26.8% of sample plots, an impact of 8.1% is large and 
practically important. 

Table 2 also reports the effects of perceiving increasing drought- 
severity on DTV use by sample-subgroups. The results suggest that the 
effect is stronger on plots without access to irrigation. The ATTs for 
increasing drought-severity perception show a 9.8% and 7.5% increase 
in the probability of DTV use on plots without and with access to irri-
gation, respectively. Plots without irrigation would incur much bigger 
yield losses if droughts occurred. Therefore, increasing drought-severity 
perception is more likely to induce farmers’ actions on such plots. The 
ATTs do not differ much between normal and drought years (8.2% 
versus 8.0%), providing further evidence that farmers use DTVs as an ex- 
ante adaptation strategy. The ATTs do vary with farm size. Sample 
farmers are divided into three equal portions based on farm size. On 
farms where per capita land holdings are above 0.2 ha/person (top 
33%), farmers’ increasing drought-severity perceptions increase the 
likelihood of DTV use by 22.5%. On medium-size farms where per capita 
land holdings range from 0.09 to 0.2 ha/person (middle 33%), the ATT 
is still positive but much smaller (3.1%). No effect is observed on small 
farms where per capita land holdings are below 0.09 ha/person (bottom 

33%). As droughts would have bigger impacts on larger farms, 
increasing drought-severity perception is more likely to induce farmers 
with larger farms to act. The ATTs of increasing drought-severity per-
ceptions are lower in villages with drought-mitigation support than 
those without such support (6.8% versus 14.9%). This indicates that the 
availability of drought-mitigation support muffles the effects of 
increasing drought-severity perceptions on DTV use. One possible 
explanation is that drought-related extension services might be focusing 
more on post-disaster assistance than educating farmers about climate 
change and offering support to establish proactive measures. Finally, the 
positive effects of increasing drought-severity perceptions on DTV use 
are larger on plots further away from home. The plots are divided into 
three equal portions based on their distance to farmers’ houses. The 
ATTs of increasing drought-severity perception on plots more than 1 km 
away (top 33%) are almost twice that of plots closer by. One explanation 
is that it is more time-consuming to monitor the conditions of plots 
further away to assess irrigation needs. Using DTVs on those plots 
generate larger benefits in terms of labour time saved. 

3.2.2. Farmers’ drought-severity perceptions and irrigation 
Table 3 reports the estimation results of ESPM for irrigation use on 

maize plots. Only plots with access to irrigation are included in the 
analysis. The Wald χ2 test statistic of the model is statistically significant 

Table 4 
Average treatment effect of increasing drought-severity perceptions on 
irrigation.   

ATTa Absolute t-value 

All sample –0.151 * ** 22.943 
Weather conditions  
Normal year –0.169 * ** 18.430 
Drought year –0.132 * ** 14.100 
Farm size   
Small (0–0.09 ha/person) –0.118 * ** 14.292 
Medium (0.09–0.2 ha/person) –0.173 * ** 13.503 
Large (> 0.2 ha/person) –0.165 * ** 12.759 
Drought-mitigation support   
Yes –0.123 * ** 18.797 
No –0.298 * ** 14.112 
Distance from plot to house   
Near (0–0.5 km) –0.139 * ** 14.571 
Medium (0.5–1 km) –0.168 * ** 13.152 
Far (> 1 km) –0.153 * ** 12.134 

Note: a. Average treatment effect on the treat. b. *, **, and *** denote levels of 
statistical significance at 10%, 5%, and 1%, respectively. 

Table 5 
Estimation results of drought-tolerant varieties use and irrigation (only plots with access to irrigation).  

Categories Probit IV-Probit Endogenous switching probit model 

(1) 
Irrigation 

(2) 
Irrigation 

(3) 
Use of drought-tolerant 
varieties 

Irrigation 

(4) 
Drought-tolerant varieties 
use= 1 

(5) 
Drought-tolerant varieties 
use= 0 

Drought-tolerant varieties use (1 =Yes;0 =No) –0.439*** –0.400***  — —  
(0.108) (0.113)    

IV for drought-tolerant varieties usea — — 2.865*** — —    
(0.285)   

Drought-severity perception (1 =Yes;0 
=Otherwise) 

0.213*** — — — —  

(0.082)     
IV for drought-severity perceptionb — -0.141 — — —  

(0.299)    
All explanatory variables inTable 5 Controlled Controlled Controlled Controlled Controlled 
Obs. 2226c 2226c 2571 
Wald χ2 765.06*** 537.59*** 646.69*** 

Notes: a. The share of other farmers in the same village that used drought-tolerant varieties is used to instrument for the “Drought-tolerant varieties use” variable. b. 
The average drought-severity perception of other farmers in the same village is used to instrument for the “Drought-severity perception” variable. c. 323 (22) ob-
servations are dropped because successes (failures) are perfectly predicted. d. *** denotes the level of statistical significance at 1%. e. Robust standard errors are 
reported in parentheses. 

Table 6 
Average treatment effect of drought-tolerant varieties use on irrigation.   

ATTa Absolute t-value 

All sample –0.275 * ** 20.959 
Weather conditions  
Normal year –0.253 * ** 13.849 
Drought year –0.296 * ** 15.786 
Farm size   
Small (0–0.09 ha/person) –0.181 * ** 7.145 
Medium (0.09–0.2 ha/person) –0.266 * ** 7.519 
Large (> 0.2 ha/person) –0.319 * ** 19.276 
Drought-mitigation support   
Yes –0.276 * ** 19.815 
No –0.267 * ** 6.810 
Distance from plot to house   
Near (0–0.5 km) –0.260 * ** 12.973 
Medium (0.5–1 km) –0.265 * ** 10.881 
Far (> 1 km) –0.305 * ** 12.409 

Note: a. Average treatment effect on the treat. b.*, **, and *** denote levels of 
statistical significance at 10%, 5%, and 1%, respectively 
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and different from zero, indicating the joint significance of all explan-
atory variables. However, the Wald χ2 test of independent equations fails 
to reject the null hypothesis of the joint independence of the equations. 
Neither of the two estimated correlations between equations (ρ0 and ρ1) 
is statistically significant, suggesting that the hypothesis of no selection 
bias for farmers’ drought-severity perception in explaining irrigation 
cannot be rejected. Therefore, although ESPM use is valid, it does not 
necessarily increase estimation efficiency relative to an approach that 
estimates Eqs. (2.1), (2.2a), and (2.2b) separately. 

Most estimates of parameters in the selection Eq. (2.1) for the ESPM 
for irrigation (Table 3, column 1) are consistent with those for DTV use 
(Table 1, column 2). One interesting difference is the coefficient of the 
irrigable land share in the village is negative and statistically significant 
in Table 3 but not in Table 1. This means that irrigation conditions only 
shape drought-severity perceptions for plots that have access to irriga-
tion. Better irrigation conditions reduce the likelihood of perceiving 

increasing drought-severity, perhaps because irrigable plots in villages 
with better irrigation conditions are more sheltered from the negative 
drought impacts. 

There are fewer differences in the coefficients of irrigation equations 
between perceivers and non-perceivers (Table 3, columns 2 and 3) than 
those observed for DTV equations reported in Table 1. For both per-
ceivers and non-perceivers, farmers are more likely to irrigate loam and 
clay plots instead of sandy plots, probably due to higher percolation 
rates on sandy plots. For both groups, the distance from a plot to a 
farmer’s house is positively correlated with the probability of irrigation. 
One significant difference lies in the gender effect. Among non- 
perceivers, a male household head increases the irrigation likelihood 
while no correlation is observed between gender and irrigation among 
perceivers. The same difference is observed in Table 1. Another signif-
icant difference is while current weather conditions do not affect the 
irrigation likelihood among perceivers, drought occurrence increases 
irrigation among non-perceivers. The coefficient of the dummy indi-
cating a drought year is negative and statistically significant in the 
equation for non-perceivers. This difference is consistent with the 
observation from Table A.4 in Appendices A that non-perceivers are 
more likely than perceivers to use irrigation as an ex-post adaptive 
strategy. 

Table 4 reports the ATTs of perceiving increasing drought-severity 
on irrigation. Overall, increasing the drought-severity perception re-
duces irrigation probability by 15.1%. The negative effect is slightly 
stronger in drought years than normal years and is smaller on small 
farms than medium and large farms. Subgroups by the availability of 
drought-mitigation support present the largest differences in ATTs. The 
negative effect of perceiving increasing drought-severity in villages that 
do not have drought-mitigation support is more than twice the other 
villages. The differences in ATTs among plots with varying distances to 
farmers’ houses are not statistically significant. 

3.2.3. Relationship between DTV use and irrigation 
Table 5 reports the estimation results of several models used to 

explore the DTV–irrigation decision relationship. Columns 1 and 2 are 
both probit models where irrigation is the outcome and DTV use is 
added as an explanatory variable. In column 2, the average drought- 
severity perception of other farmers in the same village is used to in-
strument for a farmer’s perception. Although the coefficient of percep-
tion is positive and statistically significant in the simple probit model 
(column 1), in the IV-probit model (column 2), its magnitude drops to 
nearly zero and the statistical significance is lost. Therefore, it is most 
likely that after the use of DTVs is controlled for, drought-severity 
perception does not have additional predictive powers for variations 
in irrigation decisions. This is because that irrigation is more likely to be 
used as an ex-post adaptation strategy. Irrigation decisions are made 
contingent on field and weather conditions during the growing season, 
not on perceptions formed before the growing season. In both columns 1 
and 2, the coefficients of the variable indicating DTV use are negative 
and statistically significant, pointing to a negative correlation between 
DTV use and irrigation on maize plots. 

The ESPM with FIML estimation is presented in columns 3–5. Col-
umn 3 is the selection equation for DTV use. Columns 4 and 5 are the 
switching equations on irrigation for DTV users and non-users. Percep-
tion is not included because it does not seem to have predictive powers 
once DTV use is controlled for. The share of other farmers in the same 
village that used DTVs is used to instrument for a farmer’s DTV use. The 
coefficient of the IV is positive and statistically significant at 1% 
(Table A.5 in Appendices A). The results of ESPM in columns 3–5 could 
be further used to conduct a counterfactual analysis of the impact of DTV 
use on irrigation. Table 6 reports the ATTs computed from the estima-
tion results of the ESPM. The direction of the ATTs is consistent with that 
in the simple probit model. The treatment of “using DTVs” decreases the 
probability of irrigation by 27.5%. 

According to the results in Table 2, 4–6 together, the relationships 

Table A.1 
Summary statistics of key variables.  

Variable name (in italic) and description Mean Standard 
Deviation 

Min Max 

Used drought tolerant variety 0.268 0.442 0 1 
Drought year (1 =Yes;0 =Otherwise) 0.264 0.441 0 1 
Normal year (1 =Yes;0 =Otherwise) 0.268 0.443 0 1 
Irrigated (only plots with access to 

irrigation) 
0.789 0.410 0 1 

Drought year (1 =Yes;0 =Otherwise) 0.802 0.399 0 1 
Normal year (1 =Yes;0 =Otherwise) 0.772 0.420 0 1 
Plot level (1695 plots)     
Plot size (ha) 0.28 0.31 0.01 3.00 
Soil type dummy variables: Sandy (1 
=Yes;0 =Otherwise) 

0.28 0.45 0 1 

Loam (1 =Yes;0 =Otherwise) 0.40 0.49 0 1 
Clay (1 =Yes;0 =Otherwise) 0.32 0.47 0 1 
Source of irrigation: Surface water 0.266 0.442 0 1  

Underground water (1 
=Yes;0 =Otherwise) 

0.493 0.500 0 1  

No-irrigation (1 =Yes;0 
=Otherwise) 

0.231 0.428 0 1 

Dis. House (Distance from plot to 
house in km) 

0.89 0.86 0 8.00 

Irri. Access (A plot has access to 
irrigation) 

0.758 0.428 0 1 

Farmer and farm level (1058 farmers) 
Perception (Farmers’ perceptions of 

drought severity, 1 =
Increased; 0 = Same, 
Decreased or Don’t 
know) 

0.71 0.45 0 1     

Male (Gender of the 
respondent is male) 

0.89 0.32 0 1 

Age (Age of the respondent in 
years) 

51.70 10.38 23.00 86.00 

Education (Years of schooling the 
respondent) 

6.70 3.05 0.00 16.00 

Family size (Number of family 
members) 

4.44 1.83 1 12 

Off-farm 
work 
(%) 

(Share of family members 
with off-farm work) 

28.82 24.15 0 100 

Farm size (Per capita land holding 
in ha/person) 

0.23 0.31 0.01 5.88 

Dis. Shop (Distance from house to 
nearest agriculture 
supply shop in km) 

4.00 5.41 0 50.00     

Village level (123 villages) 
Support (Drought mitigation 

support is available in the 
village) 

0.85 0.35 0 1 

Insurance (Agricultural insurance 
support in the village) 

0.911 0.286 0 1 

Irrigable 
land 

(Share of irrigable land in 
the village) 

0.60 0.36 0 1 

Source: Authors’ survey  
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among drought-severity perception, DTV use, and irrigation can be 
summarised as follows. Perceiving increasing drought-severity increases 
DTV use likelihood and reduces irrigation likelihood in maize produc-
tion. Further, it is likely that the negative effect of perception on irri-
gation mainly works through the negative correlation between using 
DTVs and irrigation. 

Table 6 also reports the ATTs of using DTVs on irrigation by sample- 
subgroups. The results suggest the negative effect is stronger in normal 
years than in drought years (25.3 versus 29.6% reduction irrigation 
likelihood). This is consistent with the observation in Table A.4 in 
Appendices A that DTV non-users irrigate a larger share of their plots 
than users but the difference is statistically significant only in normal 

years. This finding may be more important for areas that use ground-
water. Less water use in normal years means more water would be 
available in aquifers during drought years. The negative effect DTV use 
on irrigation is stronger on large farms than on medium or small farms. 
The ATTs do not differ much between villages with and without 
drought-mitigation support and are larger in magnitudes on plots 
further away from farmers’ houses. 

3.3. Robustness check 

To confirm the stability of the main findings of this study, we further 
conduct a set of robustness checks as follows. First, we re-estimate the 

Table A.2 
Differences in explanatory variables between users and non-users of drought-tolerant varieties and irrigation.   

Drought-tolerant varieties Irrigation 
(Only plots with access to irrigation) 

Normal year  Drought year Normal year  Drought year 

Users Non-users  Users Non-users Users Non-users  Users Non-users 

Plot level           
Plot size (ha) 0.43 0.23 * **  0.43 0.23 * ** 0.25 0.27  0.27 0.24 
Soil type:           
Sandy(1 =Yes;0 =Otherwise) 0.35 0.26 * **  0.35 0.26 * ** 0.28 0.24  0.28 0.26 
Loam (1 =Yes;0 =Otherwise) 0.38 0.40  0.37 0.40 0.37 0.41  0.36 0.44 * * 
Clay (1 =Yes;0 =Otherwise) 0.28 0.34 * *  0.28 0.34 * * 0.34 0.35  0.35 0.30 * 
Source o irrigation:           
Surface water (1 =Yes;0 =Otherwise) 0.158 0.305  0.156 0.302 0.316 0.494  0.318 0.447 
Underground water 

(1 =Yes;0 =Otherwise) 
0.457 0.505  0.460 0.506 0.684 0.506  0.682 0.553 

No-irrigation (1 =Yes;0 =Otherwise) 0.384 0.189  0.383 0.191 - -  - - 
Distance from plot to house (km) 1.09 0.81 * **  1.09 0.81 * ** 0.85 0.71 * **  0.86 0.65 * ** 
Irrigation access (1 =Yes;0 =Otherwise) 0.62 0.81 * **  0.62 0.81 * **      
Farmer and farm level          
Gender of respondent 

(1 =Male;0 =Female) 
0.93 0.87 * **  0.93 0.88 * ** 0.87 0.90 *  0.87 0.89 

Age of respondent (years) 49.73 52.84 * **  49.67 52.84 * ** 52.76 52.88  52.67 52.83 
Education of respondent (years) 6.80 6.66  6.82 6.66 6.74 6.50  6.71 6.61 
Number of family members 4.26 4.52 * *  4.20 4.54 * ** 4.42 4.58  4.42 4.61 
Share of family members with 

off-farm work (%) 
24.82 30.23 * **  24.47 30.33 * ** 29.72 28.47  29.63 28.61 

Farm size (ha/person) 0.35 0.19 * **  0.36 0.19 * ** 0.22 0.21  0.23 0.18 * * 
Distance to the nearest 

agricultural shop (km) 
5.80 3.10 * **  5.89 3.08 * ** 3.04 3.73 * *  3.06 3.76 * * 

Village level           
Drought mitigation support (1 =Yes;0 =Otherwise) 0.90 0.83 * **  0.90 0.83 * ** 0.84 0.88 *  0.83 0.81 * ** 
Agricultural insurance 

(1 =Yes;0 =Otherwise) 
0.96 0.89 * **  0.96 0.89 * ** 0.89 0.97 * **  0.90 0.95 * * 

Share of irrigable land in the village 0.47 0.68 * **  0.48 0.67 * ** 0.79 0.60 * **  0.78 0.56 * ** 
Observations of plots 454 1241  448 1247 993 293  1032 255 

Note: a. *, **, *** denote the level of statistical significance of a mean-comparison test is at 10%, 5%, and 1%, respectively. b. The differences in means of most 
variables between drought-tolerant varieties users and non-users are statistically significant at either 5% or 1%. This is the case for both normal and drought years. The 
results indicate possible correlations between these variables and the use of drought-tolerant varieties. c. Between irrigated and rain-fed maize plots, the differences in 
means are statistically significant for fewer variables but the results still reveal some possible correlations. 

Table A.3 
Falsification test of the validity of the selection instrument using Probit model.  

Dependent variable Drought-severity perception Drought-severity perception = 0 

Drought-tolerant varieties use Irrigation 

IV for the perceptiona 2.974*** 2.306*** 0.304 0.372 -0.157 -0.530  
(0.110) (0.164) (0.193) (0.525) (0.175) (0.3272) 

Other variables  Controlled  Controlled  Controlled 
Township dummies  Controlled  Controlled  Controlled 
Constant -1.441*** -0.642** -0.957*** -3.706*** 0.423*** 0.936  

(0.074) (0.328) (0.109) (1.054) (0.097) (0.814) 
N 3390 3284a 1044 708b 1044 618c 

Pseudo R2 0.210 0.219 0.115 0.423 0.369 0.244 
LR χ2 880.40*** 897.36 * ** 2.49*** 367.71 * ** 0.81*** 177.50 * ** 

Note: a. The average drought-severity perception of other farmers in the same village is used to instrument for the variable “Drought-severity perception”. b. 106 
observations are dropped because successes are perfectly predicted. c. 330 (6) observations are dropped because failures (successes) are perfectly predicted. d. 214 (22) 
observations are dropped because successes (failures) are perfectly predicted. e. * , * *, * ** denote levels of statistical significance at 10%, 5%, and 1%, respectively. 
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impacts of drought perception on using DTVs and irrigation by adjusting 
samples. Considering the geographic distribution of sample provinces in 
this study, all provinces are located in northern China in addition to 
Jiangsu province. Thus, we drop the samples from Jiangsu and re- 
estimate the empirical models. As shown in Table A.6 in Appendices 
A, for the samples from all northern provinces, the impact of drought 
perception on DTVs use gets smaller than that of previous results, while 
both drought perception and DTVs use have more negative impacts on 
irrigation than before. Hence, although the magnitudes of ATTs 
changed, their significances and impact directions are completely same 
with our main results. These results not only confirm the stability of the 
main findings but also imply heterogeneous effects of farmers drought 
perceptions on adaptation strategies in different regions. 

Second, the impact of increasing drought-severity perceptions on 
DTVs use is re-estimated by employing the two steps and control func-
tion approach (Table A.6 in Appendices A). The marginal effect of 

drought perception on DTVs use is significantly positive, consistent with 
the ATT of main results. However, the combination approach of two 
steps and control function cannot control for the potential selection bias; 
accordingly, here, the marginal effect of increasing drought-severity 
perceptions on DTVs use is over-estimated. 

Third, the irrigation model is re-estimated by using a variable of 
irrigation count, whilst the endogenous treatment Poisson regression is 
further employed. As shown in Table A.6 in Appendices A, the ATTs of 
drought perception and DTVs use on irrigation count are both signifi-
cantly negative. The results are in line with the main results and further 
confirm that perceiving increasing drought-severity and using DTVs can 
reduce the use of irrigation. 

4. Conclusions 

In response to drought, maize farmers in north China may have both 
ex-ante and ex-post adaptations, while this study focuses on two adap-
tation strategies: the ex-ante adoption of DTVs and the ex-post use of 
irrigation. Farmers’ perception of increasing drought-severity can in-
crease the probability of using DTVs by 8.1% and lower the probability 
of irrigation by 15.1% on maize plots. However, once DTV use is 
controlled for, perception does not seem to have additional predictive 
powers for irrigation, implying that irrigation decisions are made not on 
perceptions formed before the growing season. Instead, DTV use reduces 
the probability of irrigation by 27.5%, confirming that DTV use is 
effective for saving irrigation water. 

This study contributes to the existing literature of the impacts of 
farmers’ perceptions on their adaptation to climate change. As shown in 
most studies (Abid et al., 2020; Brüssow et al., 2019; Dang et al., 2019), 
farmers who perceived climate change are more likely to take adaption 
actions. Our study provides additional evidence for the positive linkage 
between perceptions and adaptation behaviour. Moreover, this study 
distinguished ex-ante and ex-post adaptations and found out perceptions 
may have different impacts on different types of adaptation measures. 
Similar to our results, Brüssow et al. (2019) found that farmers in 
Tanzania who perceived climate change are more likely to take 
short-term adaptations rather than investment-intensive method, such 
as building irrigation system. Hou et al. (2017) found that farmers 
perceiving increasing drought are more likely to adopt water-saving 
technologies, but they did not distinguish ex-ante and ex-post adapta-
tions. This paper also advanced the literature by setting up a conceptual 
framework to describe the linkages between perceptions and different 
types of adaptation measures. Few existing studies presented theoretical 
models. 

The findings of this study have three policy implications. First, the 
positive effect of perceiving increasing drought-severity on DTV use 
suggested that policy makers can improve adoption of DTV through 
increasing farmers’ perceptions of climate change. Less than 30% of our 
sample plot used DTVs, indicating large scope for boosting its use. 
Second, our results also suggest that several channels that could improve 

Table A.4 
Comparisons of the use of adaptation strategies between normal and drought years and by farmers’ perception of drought severity.   

Share of farmers using drought-tolerant varieties (%)   Share of farmers using irrigation (%) (Only plots with access to irrigation) 
Normal year 
(N) 

Drought year 
(D) 

Difference 
(N - D)a   

Normal year 
(N) 

Drought year 
(D) 

Difference 
(N - D)a 

All sample plots 26.78 26.43 0.35   77.18 80.19 -3.01 * 
Perceptions of increasing drought severity 
Yes 29.16 28.90 0.26   79.11 79.42 -0.31 
No 21.46 20.88 0.58   73.30 81.73 -8.43 * ** 
Difference (Yes-No)a 7.70 * ** 8.02 * **    5.81 * * -2.31  
Drought tolerant varieties use 
Yes      72.14 79.34 -7.20 * * 
No      78.59 80.42 -1.83 
Difference (Yes -No)a      -6.45 * * 1.08  

Note: a. The Difference columns and rows report the results of mean-comparison tests. b. * , * * and * ** denote levels of statistical significance at 10%, 5% and 1%, 
respectively. 

Table A.5 
Farmers’ perceptions of drought severity and the use of drought-tolerant vari-
eties and irrigation.  

Perceptions of 
drought severity 

Sample size Share of farmers 
using drought- 
tolerant varieties 
(%) 

Share of farmers 
using irrigation 
(%) Freq. Percent 

(%) 

Increased# 754 71.27 29.03 58.23 
Decreased 114 10.78 18.95 * ** 66.05 * ** 
Same 182 17.20 22.17 * ** 61.79 * 
Don’t know 8 0.76 28.57 64.29 

Note: a. # reference group of mean-comparison tests. b. *, ** and *** denote 
levels of statistical significance at 10%, 5% and 1%, respectively. 

Table A.6 
Results of robustness check.  

a. Exclude samples from Jiangsu province  

Categories Impact of 
increasing 
drought-severity 
perceptions on 
drought-tolerant 
varieties use 

Impact of 
increasing 
drought-severity 
perceptions on 
irrigation 

Impact of 
drought-tolerant 
varieties use on 
irrigation  

ATTa 0.039 * ** -0.162 * ** -0.361 * ** 
b. Alternative estimations & alternative specification of irrigation variable  

Alternative 
estimations 

Two steps & 
Control function 
approach 

Endogenous 
treatment 
Poisson 
regression 

Endogenous 
treatment 
Poisson 
regression  

Alternative 
specifications  

Irrigation times Irrigation times  

ATT 0.239 * ** -0.700 * ** -0.675 * ** 

Note: a. Average treatment effect on the treat. b. *, ** and *** denote levels of 
statistical significance at 10%, 5% and 1%, respectively. 
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farmers’ perceptions. For example, educating influential farmers in the 
village about the changes in weather conditions would pay off, as our 
results show that peer perceptions matter. Another example, in-
terventions that target large farms may be more effective. Third, the 
linkage between ex-ante and ex-post adaptation measures suggest that it 
is of great important to distinguish types of adaptation measures as 
limited adaptation resources could be allocated efficiently. In our 
example, DTVs can reduce use of irrigation water. This has significant 
policy implications, especially for the areas with severe water shortage. 
Moreover, in those areas, targeting larger farms and villages where land 
is distributed more sparsely and further away from farmers’ houses to 
promote DTVs may achieve a larger reduction in irrigation water use. 
Under the constraint of water resource, the water saving by using DTVs 
actually has huge external positive effect on the sustainability of eco-
nomic, social development and environment. 

Finally, we call for further study on evaluating the optimal strategy 
mix, i.e. how to allocate adaptation funding and efforts among different 
types of adaptation measures. In our sample, almost 80% of irrigable 
sample plots are irrigated, while less than 30% use ex-ante adaptations 
such as DTVs. If ex-ante adaptations can better hedge farmers against 
weather risks at lower costs compared to those of ex-post adaptations, 

more extension efforts and financial resources should be allocated to-
wards ex-ante adaptations. 
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Appendices A. 

See Appendix Tables A.1-A.6. 

Appendices B. 

Theoretical framework 

Referring the studies of Foudi and Erdlenbruch (2012), Lehmann, N. and Finger (2014) and Jianjun et al. (2015), this study develops a conceptual 
model to capture the impacts of farmers’ drought-severity perceptions on their ex-ante and ex-post adaptations based on the expected utility model. In 
practice, farmers have many adaptation strategies to drought risks, for instance, adopting new technology, planting new crop varieties, purchasing 
crop insurance, crop diversification, investing in irrigation infrastructure (Jianjun et al., 2015). This study focuses on the use of drought-tolerant 
varieties and irrigation, as they are the most direct related measures with water. The study on these two strategies helps better understand the 
design of agricultural water-saving strategies under drought risks. Thus, the use of drought-tolerant varieties (DTVs) of maize is treated as an ex-ante 
adaptation as this decision is made before the start of the growing season, and is ex-ante relative to the drought occurring in the growing season. In 
contrast, irrigation is an ex-post adaptation to drought, because the irrigation decision is made according to actual weather conditions. Sufficient 
precipitation could ensure maize is completely rain-fed without the need for irrigation. If a drought occurs, then farmers will decide whether to 
irrigate. Thus, in maize production, irrigation decisions can be treated as an ex-post adaptation to drought. Hence, the conceptual model can be 
established through two stages. 

The ex-ante choice of maize variety 

In the first stage, a decision model on DTV adoption in maize farming is developed based on the expected utility model and the household model of 
agricultural production. The expected utility ( ui) is assumed to be determined by the profit of the maize farming at the ith plot and its maximisation 
problem can be written as follows: 

Maxui = Max
{∫

[yi − c(ki)f (yi)dy
}

(B.1)  

s.t.yi = y(ki|Li, Ii)

∑2

i=1
ki = 1  

where Li represents the planting area of maize farming at the ith plot available to the farmer, while Ii denotes the irrigation condition of the ith plot. The 
vector ki = (ki1, ki2), where ki1 and ki2are dummy variables representing the variety use of the ith plot (ki1=1 denotes DTV; ki2=1 denotes conventional 
variety). yi is a vector of outputs corresponding to ki given the planting area of maize (Li) and the irrigation condition (Ii) of the ith plot, while c(ki) is 
the cost function corresponding to ki. In addition to the used variety (ki), the cost function (c(ki)) also depends on the variable inputs and the cor-
responding prices. 

f(y) is the farmer’s subjective probability density function for yi, which is assumed to be solely related to the weather conditions (wt) in the coming 
crop season (Bai et al., 2015). We assume that all maize farmers in the same location face the same market prices of maize, maize varieties, and inputs 
in the observation year. According to our observations, as no significant differences exist in the market prices of DTVs and conventional varieties, the 
price variables are omitted in the utility function (1). 
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As farmers do not know the weather conditions in the coming crop season (wt), they make the decision on x based on their prediction of the weather 
conditions. Here, we assume that farmers’ prediction of weather conditions in the coming crop season (ŵt ) can be expressed as 

ŵt = g(w− t,P) (B.2)  

where w− t denotes the real weather conditions in previous years, while P represents farmers’ perceptions of the weather condition change in previous 
years. 

By incorporating the weather condition prediction function (B.2) into the maximisation problem (B.1), the optimal variety choice (xit
∗) of the ith 

plot can be conceptually derived as 

xit
∗ = z(w− t,P, c,Li, Ii) (B.3)  

where the real weather conditions in previous years (w− t) could be omitted as there is an implicit assumption that all farmers in the same location (g) 
faced the same weather conditions in previous years. Given this study’s focus on drought adaptations, the perception of a change in weather conditions 
(P) here is proxied by the drought-severity perception (P′). The optimal variety choice of the ith plot for using DTV can then be simplified as: 

ki1
∗ = z′(P′

, c, Li, Ii, g) (B.4)  

whereki1
∗
= 1 indicates that the maize farmer adopts DTV at the ith plot, otherwise 0. The formula (B.4) reveals that the ex-ante choice of using DTV on 

the ith plot depends on farmers’ perceptions of drought severity, the input costs (c) of DTV and conventional variety, the plot area (L), irrigation 
condition (I) and the location (g) of the ith plot. 

The ex-post choice of irrigation 

In the second stage, the decision on irrigation is made according to the previous decision of DTV adoption and actual weather conditions. Hence, in 
this stage, the expected utility maximisation ( ui) of the maize farming of the ith plot can be modified as: 

Maxui = Max
{∫

[yi − c′

(ki1
∗, ii)]g(yi)dy

}

(B.5)  

s.t.yi = y(ki1
∗, ii|Li, Ii)

∑2

m=1
iim = 1  

where ii1 and ii2are dummy variables representing the irrigation decision of the ith plot (ii1=1 denotes irrigate; ii2=1 denotes do not irrigate) that 
constitute ii = (ii1,ii2). yi is a vector of outputs corresponding to ki1

∗ and ii given the area (Li) and irrigation condition (Ii) of the ith plot. c′

(ki1
∗
, ii) is the 

cost function corresponding to ki1
∗ and ii. The farmer’s subjective probability density function g(y) is assumed to be related to weather conditions ẇt, 

which includes both the actual weather conditions prevailing in the crop growing season (wt− 1) and the prediction in the coming crop season (ŵt ). 
The optimal choice of i could, thus, be conceptually expressed as: 

it
∗ = l(w− t,wt− 1,P

′

, c′

, ki1
∗,Li, Ii) (B.6)  

where both the weather conditions in previous years (w− t) and the actual weather conditions occurring in the crop growing season (w− t) could be 
neglected by assuming weather conditions remain unchanged at the same location (g). The irrigation decision on the ith plot can be obtained and 
written as a function (B.7) by incorporating the function (B.4) into the function (B.6): 

ii1
∗ = l′ (P′

, c, c′

, Li, Ii, g) (B.7) 

Hence, the drought-severity perceptions determine the ex-post irrigation decision of the ith plot. Also, the ex-post irrigation decision is affected by 
the input costs of maize farming using DTV and conventional variety at the ith plot (c), the input costs of irrigation at the ith plot (c′ ), the planting area 
(Li) and irrigation condition of the ith plot Ii, and the location g. 
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