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A B S T R A C T   

Using a newly-compiled dataset of airport traffic, air pollution, and weather from 2015 to 2017, 
we evaluate the effect of PM2.5 pollution levels on flight departure delays in China. We instrument 
for PM2.5 levels using changes in atmospheric thermal inversions and wind direction. We find that 
a one-standard-deviation increase in the daily PM2.5 concentration levels leads to roughly 4.5–6.4 
additional minutes in departure delays per flight. We estimate that reductions in China’s PM2.5 
pollution levels due to the Air Pollution Prevention and Control Action Plan avoided 13–18% of 
the increases in national average flight delays and saved US $54 to $69 million in passenger time 
in 2017 alone.   

1. Introduction 

Airport delays cause substantial economic losses to millions of passengers, airlines, and the global economy (Ball et al., 2010). In 
the U.S. and Europe, such delays have been attributed primarily to increases in market concentration, airport congestion, and weather 
shocks (Deshpande and Arıkan, 2012; Mayer and Sinai, 2003; Santos and Robin, 2010). However, recent studies have suggested that 
severe air pollution may be an important driver of flight delays in developing countries, along with inefficient airport operations and 
outdated traffic control procedures (AlKheder and AlKandari, 2020; Baddock et al., 2013). Although research has linked air pollution 
to adverse health consequences (Chay and Greenstone, 2003; Chen et al., 2013; Lelieveld et al., 2015), impaired cognitive performance 
(Carneiro et al., 2021; Ebenstein et al., 2016; Zhang et al., 2018), reduced labor supply (Hanna and Oliva, 2015), lower work pro-
ductivity (He et al., 2019; Zivin and Neidell, 2012), decreased happiness (Zhang et al., 2017; Zheng et al., 2019), and road traffic 
accidents (Sager, 2019), the relationship between air pollution and flight delays or cancellations has not been quantitatively assessed.2 
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In this paper, using a newly-compiled dataset of airport traffic, air pollution, and weather from 2015 to 2017, we evaluate the 
impacts of air pollution on flight departure delays in China. There are several reasons for this focus. First, China has become the world’s 
largest aviation market, with over 610 million passengers carried every year since 2017 (The World Bank, 2018). Second, flight delays 
have become a pressing issue in China. According to the Civil Aviation Administration of China (CAAC), approximately 8% of the total 
departures (~243 thousand flights) were delayed for more than 2 h in 2017 in large Chinese airports that transport over 10 million 
passengers each year. Flight delays routinely account for about 50% of all customer complaints to the CAAC (). Finally, despite sig-
nificant progress in reducing pollution emissions (Zhang et al., 2019), major Chinese cities such as Beijing and Shanghai still rank 
among the most polluted in the world. Hundreds of flights were either severely delayed or canceled daily in the winters of 2012, 2013, 
and 2016, as air pollution shrouded these two cities (Tang and Hoshiko, 2013; Zhuang, 2016). 

Air pollution may cause flight delays or cancellations for two possible reasons. First, particulate matter can reduce atmospheric 
visibility (Hyslop, 2009). Poor visibility at airports can downgrade the capacity of an airport and therefore lead to delays or can-
cellations of departing flights. Second, air pollution reduces the cognitive performance of airport ground crew and airline cabin crew, 
which may increase the possibility of flights being delayed or cancelled. Several studies document negative correlations between air 
pollution and cognitive performance (Carneiro et al., 2021; Ebenstein et al., 2016; Zhang et al., 2018). Ebenstein et al. (2016) find that 
transitory PM2.5 exposure is associated with a significant decline in student academic performance. Thus, short-term exposure to PM2.5 
is expected to negatively affect cognitive performance of airport ground and cabin crews. Because efficient air transportation is a 
complex task that requires tight coordination among airport ground and cabin crews, the efficiency of airport operations could be 
significantly reduced by air pollution. However, the literature has so far overlooked the potential impact of air pollution on flight 
delays.3 

In this study, we first investigate the impact of air pollution, measured as the daily average concentrations of PM2.5 on flight 
departure delays in China between 2015 and 2017. Second, we assess the extent to which improved air quality induced by more 
stringent air pollution policies contributed to the change in flight delays in China from 2015 to 2017. China has been undertaking 
aggressive actions to combat air pollution since the promulgation of the “Air Pollution Prevention and Control Action Plan” in 2013. 
Significant declines in PM2.5 concentrations have been observed nationwide from 2013 to 2017. (Zhang et al., 2019). The answer to 
our second research question provides critical information about the potential gains from improving air quality in China. 

The dataset used in our analysis contains flight-level information for all domestic and international air carriers landing at or 
departing from airports in North China (including Beijing, Tianjin, Hebei, Inner Mongolia and Shanxi provinces) from April 1, 2015 to 
September 30, 2017. We use two methods to measure flight departure delays. We first calculate a flight’s gross delay based on its actual 
and scheduled departure times. For flights with previous assignments, we deduct these flights’ arrival delays from the gross delays to 
calculate net flight delays in the current assignment. Because the raw high-frequency flight-by-flight dataset has a considerable number 
of missing observations, following Schlenker and Walker (2016), we aggregate the gross (or net) delays of individual flights to obtain 
daily total flight delays at the airport level; we then measure flight delays using daily average delay per flight (= daily total flight 
delays/daily total number of flights). 

Estimation of the impacts of pollution on flight delays is challenging because airports constitute a major source of air pollutants. 
Airport runway congestion due to bad weather, network delays, or air traffic controls contributes significantly to local air pollution 
(Schlenker and Walker, 2016). To credibly identify the causal effects of PM2.5 on flight departure delays, we use two instrumental 
variable (IV) strategies, where we rely on changes in atmospheric thermal inversions and wind direction as exogenous shocks to local 
pollution levels. Prior studies have used thermal inversions as an instrument for PM2.5 when estimating the effects of PM2.5 on a wide 
range of outcomes, such as health (Arceo et al., 2016; Jans et al., 2018), productivity (Fu et al., 2021; He et al., 2019), road safety 
(Sager, 2019) and crime (Bondy et al., 2020). Several recent studies also show that wind direction induces an exogenous shock to local 
pollution concentrations and can be used as an instrumental variable for PM2.5 (Bondy et al., 2020; Carneiro et al., 2021; Deryugina 
et al., 2019). 

Our results suggest that exposure to rising levels of PM2.5 significantly increases flight departure delays. We find that, on average, a 
one-standard-deviation increase in the daily PM2.5 concentration leads to 6.4 additional minutes in gross departure delay per flight and 
4.5 additional minutes in net departure delay per flight after excluding arrival delays from previous assignments, with PM2.5 
instrumented by wind direction. The estimated impacts on flight delays remain statistically similar when instrumenting pollution with 
thermal inversions. These IV estimates are robust to a wide range of variations in specifications, data, and estimation strategies. 

A key identifying assumption of our IV approaches is that, after controlling for weather conditions and relevant fixed effects, 
changes in thermal inversions and wind direction are not related to changes in flight departure delays, except through their influences 
on pollution levels. This assumption could be violated because both instruments are weather phenomena, and they may be correlated 
with unobserved weather events that affect flight planning. To ensure robustness of our findings, we augment our main specification by 
adding flexible weather controls. We also analyze subsamples that exclude days with inclement weather for flight operations. It is 
reassuring that our results are robust to these additional analyses, thus providing strong supportive evidence of the robustness of our 
estimates to the presence of unobserved weather confounding factors. 

We also investigate the validity of the monotonicity assumption when using wind direction as an instrument; this assumption is less 
of a concern for the inversion instrument because it is unlikely that the pollution-inversion relationship holds in some regions but is 

3 Several studies have attempted to explain the reasons for flight delays. For instance, Mayer and Sinai (2003) investigated the effect of airline hub 
size and airport concentration on air travel time. Rupp and Holmes (2006) examined several determinants of flight cancellations, including 
competition and revenue. 
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reversed in other regions. More specifically, we estimate alternative specifications by allowing instruments to vary with the size of 
wind direction bins and the number of groups of air pollution monitors (as explained below). Our results remain robust to these 
variations, which lends support to the monotonicity assumption for the wind direction instrument. Our IV estimates are also robust to 
simultaneously instrumenting for PM2.5 and other air pollutants, including sulfur dioxide, carbon monoxide, ozone, and nitrogen 
dioxide, suggesting that the estimated impacts of air pollution on flight delays are indeed due to PM2.5 and are not related to other air 
pollutants. 

These adverse effects of pollution on flight delays are more pronounced for passengers travelling long distances and departing from 
large airports. The observed national average net (gross) delay per flight increased by 4.6 (4.5) minutes in 2017 compared to that in 
2015. We estimate that the reduction in PM2.5 concentrations attributable to clean air policies in China, avoided approximately 
13–18% of the increases in national average flight delays and saved US $54 to $69 million in passenger time in 2017 alone. 

Our findings have a number of implications. First, the robust negative correlation between PM2.5 and flight departure delays 
demonstrates a substantial impact of air pollution that has been neglected by current estimates of social costs of air pollution, which 
primarily focus on health outcomes and productivity. Second, our results suggest that improving air quality at airports presents an 
opportunity to reduce flight departure delays, especially for flights departing from large airports and travelling long distances on 
polluted days. Finally, our results further support China’s ambitious clean air policies by showing that the improvement in air quality 
in China has led to a considerable economic benefit due to avoided flight delays. 

The rest of the paper is organized as follows. Section 2 describes data. Section 3 presents our empirical strategy, and Section 4 
reports our results. We conclude in Section 5. 

2. Data 

We compile a comprehensive dataset on airport traffic, air pollution, weather and thermal inversions in China between 2015 and 
2017. This dataset is rich in both temporal and spatial dimensions, allowing for a fine-grained analysis of how air pollution affects 
flight delays. This section reports data sources and presents descriptive statistics. 

2.1. Flight delays 

We obtain flight information from the North China Regional Administration of the Air Traffic Management Bureau of CAAC. The 
unique dataset contains flight-level information by all certified domestic and international air carriers departing from or arriving at 
airports in North China from April 1, 2015 to September 30, 2017. The dataset includes flight number, aircraft type, departure and 
arrival airports, scheduled and actual departure and arrival times, taxiing time, and the previous flight and next flight assigned to the 
airplane. Our sample covers 89 airports in China (Fig. 1 and Appendix Fig. S1). Similarly to the flight-level dataset in a case study in the 
United States (Schlenker and Walker, 2016), the original high-frequency flight-by-flight dataset used in this study has a considerable 
number of missing observations on actual departure times. To deal with this issue, we use the flight status information provided by the 
raw database to fill in some missing values. For flights that have missing values on actual departure times but have flight status 
recorded as “regular, no delay”, we assume no delay occurred and recode the actual departure time as the scheduled departure time. 

Flight departure delays are typically measured by the difference between a flight’s actual and scheduled departure times 
(Brueckner, 2005; Deshpande and Arıkan, 2012; Forbes, 2008; Mazzeo, 2003). However, this approach may lead to an overestimation 
of flight delays because it does not rule out delays caused by a flight’s previous assignments in other airports. Here, we use two methods 
to measure flight delays. First, we calculate a flight’s gross departure delay based on its actual and scheduled departure times. Second, 
for flights with previous assignments, we deduct these flights’ arrival delays from the gross delays to calculate net flight delays, which 
are solely related to conditions in the current departure airports. We compute a flight’s arrival delay based on its actual and scheduled 
arrival times. 

Fig. 1. Airline travel and PM2.5 concentration in China during 2015–2017. Note: a: The percentage of flight takeoffs from North China and net 
departure delays for airports covered by our sample. b: The spatial distribution of PM2.5 concentrations. 
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We focus on estimating the effect of pollution on the daily average flight delay at the airport level, which is equal to the sum of the 
delays of all flights throughout each day, divided by the daily total number of flights. To ensure that our estimates are not biased due to 
outliers, we drop observations from the raw data set if the net delay per flight is either above the 99th percentile or below the 1st 
percentile. We also drop all flights operated by cargo companies that carry packages only. 

2.2. Air pollution data 

We obtain air pollution data from the China National Environmental Monitoring Center, which provides hourly readings of ground- 
level concentrations of six air pollutants: sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), and par-
ticulate matter (PM10 and PM2.5) for approximately 1600 ground monitoring stations, beginning in 2013. These monitoring stations 
are widely distributed across China, with the number of monitoring stations gradually decreasing from east to west (see Figure A1 in 
Greenstone et al., 2022). To match up with our flight data, we convert the hourly pollution data into the daily averages by taking the 
duration-weighted average of all hourly readings. We then use an inverse distance weighting (IDW) method to impute pollution 
concentrations for our sample airports. Specifically, we choose a radius of 50 km surrounding the centroid of each airport and compute 
the distance-weighted averages of pollution concentrations recorded by all monitoring stations within the circle. Our results are robust 
to alternative radii. 

2.3. Weather and satellite-based thermal inversion data 

The weather data are obtained from the China Meteorological Data Service Center (http://data.cma.cn/), which reports daily 
maximum, minimum and average temperatures (in degrees Celsius, ◦C), total daily precipitation (in millimeters, mm), wind speed (in 
meters per second, m/s), wind direction (in degrees), water vapor pressure (in hPa), air pressure (in hPa), relative humidity (in %) and 
visibility (in meters, m) for approximately 820 weather stations in mainland China. Wind direction is defined as the direction from 
which the wind is blowing. We construct airport-level weather information by using the IDW method in the same fashion as the 
pollution variables are generated. 

We obtain thermal inversion data from the U.S. National Oceanic and Atmospheric Administration, which provides the Modern-Era 
Retrospective analysis for Research and Applications (MERRA) satellite data containing air temperatures every 3 h at 42 vertical levels 
from the surface to 36 thousand meters.4 The MERRA data are provided with a spatial resolution of 0.5◦ × 0.625◦ (approximately 45 
km × 55 km). We extract these grid-level inversion data for China between 2015 and 2017. An airport is assigned the readings from the 
MERRA coordinate with the closest proximity to that airport. 

Following Arceo, Hanna, and Oliva (2016), we define a thermal inversion as the air temperature of the second layer (925 hPa, about 
320 m) being higher than that of the first layer (1000 hPa, about 110 m). We use the strength of thermal inversions, measured as the 
daily aggregated temperature difference between the second and first layer, as our primary instrument. We also measure thermal 
inversions using (i) a dummy variable that takes the value of 1 if thermal inversions occur on a day and 0 otherwise, and (ii) the total 
number of hours with thermal inversions on a day to measure the frequency of thermal inversions. 

Table 1 reports descriptive statistics for key variables. The final sample consists of 74,122 airport-day observations. The daily 
average gross delay per flight is 35.7 min, which is significantly larger than the daily average net delay per flight of 13.6 min. The mean 
daily concentration of PM2.5 is 45.3 μg/m3. On average, inversion episodes occur during 7.5% of a day (= 1.8 h/24 h). Other pollution 
and temperature variables also exhibit considerable variations during the sample period. 

3. Empirical methodology 

Our objective is to estimate the causal effect of PM2.5 on flight delays, net of any potentially confounding factors. There exist several 
identification challenges. The primary challenge stems from the fact that air pollution is not randomly assigned and is subject to 
measurement errors. Regulators also may have strategically chosen the locations of monitoring stations. In our case, both flight de-
parture delays and pollution may be influenced by unobserved confounding factors. We tackle these econometric challenges by taking 
an instrumental variable approach, with thermal inversions and wind directions as two separate instruments. Following prior studies 
in the literature explaining the reasons for flight delays (Mayer and Sinai, 2003; Mazzeo, 2003), we employ a linear specification to 
estimate the relationship between pollution and flight delays. 

3.1. Panel fixed effects model 

We first model the relationship between PM2.5 and flight delays using the following fixed effect panel regression approach: 

Yi,t = βPi,t + X
′

i,tγ + θt + ci + εi,t (1)  

where the dependent variable, Yi,t, measures the average flight departure delay (minutes per flight) at departing airport i on day t. Pi,t is 
the average daily PM2.5 concentration. The parameter of interest is β, which captures the effect of PM2.5 on flight departure delays. We 

4 https://disc.gsfc.nasa.gov/datasets/M2I3NVAER_V5.12.4/summary. We use the product M2I3NVAER version 5.12.4. 
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hypothesize that increased PM2.5 concentrations are likely to increase ground congestion at airports, possibly by reducing atmospheric 
visibility and/or airport operational efficiency. The latter occurs because transitory PM2.5 exposure can negatively affect the cognitive 
performance of airport ground and cabin crews. Hence, β is expected to be positive. 

In addition to PM2.5, short-term exposure to other air pollutants, such as CO, SO2, O3 and NO2, can adversely impact human health 
and reduce productivity (Gao et al., 2021; Zhao et al., 2018). SO2 and NO2, which are precursors to PM2.5, as well as O3 play central 
roles in smog formation. Throughout most of this paper, we focus on assessing the impact of PM2.5 on flight delays for two reasons. 
One, as the primary air pollutant in China, ambient PM2.5 levels routinely exceed the World Health Organization (WHO) standard level 
for good health. PM2.5 has been identified as the principle pollutant to tackle through China’s clean air policies (Chen and Ye 2019). 
Two, PM2.5 has been used almost exclusively as a measure of air pollution in China (He et al., 2019; Zhang et al., 2018, 2019). 
However, we also control for other air pollutants and examine whether this alters our estimates of the PM2.5 impact on flight delays 
(see Table 6 in Section 4.4) . 

Flexibly controlling for weather conditions is crucial when investigating the impact of air pollution on flight delays, because 
weather is a key factor influencing air traffic delays in the aviation system (Borsky and Unterberger, 2019). This becomes especially 
prominent when using thermal inversions as an instrument, because inversions are related to changes in temperature both at ground 
level and higher up in the troposphere. To this end, we generate indicator variables for daily average temperatures, which fall into one 
of nine temperature bins, with each bin 5 ◦C wide and ranging from below 0 ◦C to above 35 ◦C. Weather variables, denoted by X′

i,t in 
equation (1), also include indicators for deciles of daily precipitation, as well as daily average wind speed, water vapor pressure, air 
pressure, and relative humidity. These variables have been identified as the key weather factors that can affect flight delays (Borsky 
and Unterberger, 2019). Moreover, the impacts of weather on flight departure delays may be nonlinear and depend on the interactions 
of some weather variables. Thus, we consider several alternative specifications. We first include all possible interaction terms of 
temperature (5 ◦C bins) and precipitation (decile bins) indicators, in addition to the other weather covariates included in the baseline 
specification. Second, we generate indicators for deciles of wind speed and relative humidity, respectively, and find that our estimates 
are robust to more flexible weather controls that incorporate all possible interaction terms of these temperature, precipitation and 
wind (or humidity) variables (see Section 4.3). 

θt is a vector of time fixed effects that are used to capture temporal shocks to flight delays, including year, month and day-of-the- 
week fixed effects. ci denotes airport fixed effects, capturing time-persistent unobserved airport attributes that affect flight delays, such 
as geographical locations, operation strategies, and systems. Since most Chinese cities have only one airport, the airport fixed effects 
can also absorb city-specific time-invariant factors that might affect flight delays. εi,t are the error terms capturing time-varying, 
airport-specific unobservables that may affect flight delays. The error terms may be spatially and temporally correlated. To account 
for this, the regression is estimated by clustering the standard errors in two dimensions: within airports and within air traffic control 
region-days. The former accounts for serial correlation within each airport, while the latter accounts for spatial correlation across 

Table 1 
Descriptive statistics.  

Variables Mean Standard deviation 

Daily Average Flight Delays (minutes per flight) 
Net flight delays 13.6 23.6  
- Domestic flights 13.6 23.6  
- International flights 26.5 30.2 
Gross flight delays 35.7 39.6 
Daily Average Air Pollution 
Particulate matter (PM2.5) (μg/m3) 45.3 37.4 
Sulfur dioxide (SO2) (μg/m3) 20.9 23.1 
Ozone (O3) (μg/m3) 61.0 30.6 
Carbon monoxide (CO) (mg/m3) 1.0 0.6 
Nitrogen dioxide (NO2) (μg/m3) 34.2 19.3 
Daily Weather 
Average temperature (◦C) 16.5 10.4 
Total precipitation (mm) 3.1 10.5 
Average wind speed (m/s) 5.7 2.8 
Water vapor pressure (hPa) 15.3 9.4 
Atmospheric pressure (hPa) 974.2 56.9 
Relative humidity (%) 68.6 18.3 
Visibility (m) 18240.5 12275.7 
Thermal Inversions 
Dummy: whether thermal inversions occur 0.3 0.5 
Frequency: number of hours with thermal inversions in each day (hours) 1.8 3.6 
Strength: aggregated temperature difference between the first and the second layers (K) 35.0 15.4 

Note: Sample size: 74,122, including 89 airports over the period April 1, 2015–September 30, 2017. 
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airports within each air traffic control region.5 We also control for the heteroskedasticity of the error terms. 
As noted above, the OLS estimator of β is prone to bias for three reasons: (i) PM2.5 is not randomly assigned across regions; (ii) 

pollution data may be subject to measurement errors and manipulation (Ghanem and Zhang, 2014); and (iii) airports are a main source 
of air pollution. For instance, airport runway congestion, caused by network delays or air traffic controls, may significantly increase 
local air pollution (Schlenker and Walker, 2016). Moreover, flight delays and the pollution level at a certain airport may be related to 
unobserved confounding factors. For instance, air traffic volume can affect flight departure delays and air pollution at the same time. 
Therefore, a naïve simple linear regression estimate might bias the true effect of pollution on flight delays. 

3.2. Instrumental variable models 

We address these econometric challenges by using two separate instruments that rely on changes in atmospheric thermal inversions 
and wind direction as exogenous shocks to local pollution levels. We first use thermal inversions as the instrument. Air temperature 
typically decreases with an increase in altitude. A thermal inversion is a deviation from this atmospheric norm. During an inversion, a 
layer of warmer air is held above a layer of cool air, trapping pollutants on the ground and resulting in an increase in pollution 
concentrations. Thermal inversions have been widely used as an instrument for pollution to explore the effects of pollution on health 
(Arceo et al., 2016; Jans et al., 2018), productivity (Fu et al., 2021; He et al., 2019), road safety (Sager, 2019) and crime (Bondy et al., 
2020). We denote INVERSIONi,t as the inversion instrument and specify our first stage as follows: 

Pi,t = πINVERSIONi,t + X′

i,tφ + θt + ci + σi,t (2) 

There are at least three ways of constructing the inversion instrument, including inversion strength, a binary indicator, and 
inversion frequency. As shown in the robustness check section, the regression results are highly consistent across alternative measures 
of inversions (Appendix Table S4). Other control variables and the fixed effects in equation (2) are defined as in equation (1). 

We also use wind directions as an alternative instrument for pollution. More specifically, we estimate the following first stage 
model: 

Pi,t =
∑

g∈G

∑2

a=0
πg

a1[Gi = g] ×WindDirection90a,90a+90
i,t +X ′

i,tφ+ θt + ci + σi,t (3) 

The variable 1[Gi = g] is an indicator for airport i being assigned to group g from the set of air quality monitoring group G. Following 
the recent work of Deryugina et al. (2019), Bondy et al. (2020), and Carneiro et al. (2021), we use the k-means cluster algorithm to 
generate 100 groups for all the pollution monitors in China based on their coordinates. The variable WindDirection90a,90a+90

i,t is another 
indicator, which is equal to 1 if the daily average wind direction at airport i on day t falls in the 90-degree interval [90a, 90a +90) and 
0 otherwise. We choose the interval [270, 360) as the reference category. The interaction term 1[Gi = g] × WindDirection90a,90a+90

i,t thus 
contains our excluded instruments. Our results are robust to variations in the numbers of spatial groups and wind direction bins (see 
Table 4 in Section 4.3)(. The coefficient πg

a captures the influence of wind direction on pollution and is allowed to vary across regions. 
We do so because airports covered by our sample are widely distributed and wind may carry pollution from different sources in upwind 
regions, resulting in the same wind direction having differential effects on pollution at different airports. Other control variables and 
the fixed effects are constructed as in equation (1). 

IV estimates can be interpreted as a local average treatment effect (LATE) (Imbens and Angrist, 1994). But this interpretation 
requires that the chosen instruments meet three identifying assumptions, namely instrument relevance, monotonicity and exclusion 
restriction (or independence). In our setting, the instrument relevance requires that both inversions and wind direction affect pollution 
concentrations. The first-stage Kleibergen-Paap F-statistics reported in Table 2 are larger than 25, indicating that inversions and wind 
direction are indeed relevant instruments. 

When using wind direction as the instrument, the monotonicity assumption requires that an airport’s PM2.5 level always increases 
(decreases) when the wind blows from a high (low) pollution direction. Monotonicity may be violated if some airports in a monitor 
group exhibit different responses to wind than do the others within the same group, or if the relationship between PM2.5 and wind 
direction changes within a 90-degree interval. To probe these possibilities, following Deryugina et al. (2019), we estimate alternative 
specifications by considering a wide range of variations in the numbers of spatial monitor groups and/or wind direction bins (see 
results in Table 4 in Section 4.3). For the inversion instrument, the monotonicity assumption is less of a concern, because a thermal 
inversion is a weather phenomenon, and it is unlikely that the pollution-inversion relationship holds in some regions (or times of year) 
but is reversed in other regions (or times of year). 

Finally, the exclusion restriction (independence) assumption requires that inversions and wind direction are not directly related to 
the changes in flight departure delays except through their influences on pollution levels. This assumption may be violated because 
thermal inversions may be accompanied by other adverse weather conditions, such as fog or freezing rain, which directly affect flight 
planning. Similarly, wind direction can also directly affect flight departure delays, although the impact is small (Borsky and Unter-
berger, 2019). Apart from flexibly controlling for ground-level weather conditions, following Sager (2019), we conduct several 

5 The CAAC divides mainland China into seven air traffic control regions: Northwest, Northeast, Central South, North, East, Southeast, and 
Xinjiang regions. The subdivision of CAAC in each of these regions is responsible for flight coordination within its own territory. 
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robustness checks by (i) incorporating all possible interactions of temperature and precipitation variables, (ii) incorporating all 
possible interactions of temperature, precipitation, and wind speed (or humidity) variables, (iii) including an additional control for 
visibility, (iv) excluding “red-alert” days from the full sample,6 (v) excluding foggy days from the full sample, and (vi) using a 
sub-sample with flight conditions recorded as “good” for flight departures, to ensure that the independence assumption is not en-
dangered. Reassuringly, the results based on a range of robustness checks provide supportive evidence of the robustness of our esti-
mates to the presence of unobserved confounding factors (see Table 5 in Section 4.3). 

4. Results 

4.1. Baseline results 

Table 2 reports on the relationship between daily PM2.5 pollution and flight delays. Columns 1–2 report the OLS estimates. In 
column 1, we include the fixed effects discussed in equation (1), while column 2 adds weather covariates. The coefficient estimates in 
both columns suggest a small and positive correlation between PM2.5 and flight delays. Each 1 μg/m3 increase in daily average PM2.5 
concentration is associated with an increase in net delay per flight by 0.004 min and an increase in gross delay per flight by 0.037 min. 
The estimates on net flight delays are not statistically significant, but the estimates on gross flight delays are statistically significant at 
the 1% level. However, the OLS estimates are subject to a range of biases discussed above, preventing a causal interpretation. 

Columns 3 and 4 of Table 2 present the IV estimates of the causal effect of daily PM2.5 pollution on flight delays, using strength of 
thermal inversions as the instrument. Appendix Table S1 shows that each additional 1 ◦C increase in the difference in temperature 
between the second layer (the 925 hPa pressure level) and the surface level is associated with an increase in PM2.5 concentrations by 
0.31–0.36 μg/m3. The first stage Kleibergen-Paap F-statistics are greater than 25, suggesting that inversions are indeed a relevant 
instrument for daily PM2.5 concentrations. Column 3 reports the IV estimates without weather controls. The estimated impacts of PM2.5 
on flight delays are substantially (approximately 10–50 times) larger than the corresponding estimates in column 1, suggesting that the 
OLS estimates suffer from significant bias. The IV estimates in column 3 imply that each 1 μg/m3 increase in daily average PM2.5 
exposure is associated with an increase of 0.217 min of net delay per flight and an increase of 0.396 min of gross delay per flight. These 
coefficients are statistically significant at the 1% level. Column 4 reports the IV estimates by adding weather controls. We find that the 
signs and levels of statistical significance of the coefficient estimates are broadly consistent with those in column 3. However, the 
magnitudes of the estimated coefficients become 50–60% smaller: each 1 μg/m3 increase in daily PM2.5 is associated with an increase 
in net delay per flight by 0.110 min and an increase in gross delay per flight by 0.159 min. This finding indicates the importance of 
controlling for weather variables, since weather plays a key role in influencing air traffic delays in the aviation system (Borsky and 
Unterberger, 2019). 

Table 2 
Estimates of the causal effects of PM2.5 on flight delays.   

(1) (2) (3) (4) (5) (6) 

OLS OLS 2SLS (Inversions) 2SLS (Inversions) 2SLS (Wind direction) 2SLS (Wind direction) 

Panel A: Net delay per flight 
PM2.5  0.00425 0.00431 0.217*** 0.110*** 0.114*** 0.119*** 

(0.00554) (0.00467) (0.0509) (0.0398) (0.0385) (0.0352) 
Panel B: Gross delay per flight 
PM2.5  0.0368*** 0.0366*** 0.396*** 0.159** 0.180** 0.170** 

(0.0101) (0.00904) (0.0851) (0.0694) (0.0735) (0.0671) 
Observations 74,122 74,122 74,122 74,122 74,122 74,122 
F-test (KP statistics) – – 26.78 39.67 344.8 64.91 
Weather controls – YES – YES – YES 

Note: This table reports the estimated impacts of daily average PM2.5 level on daily average net delay per flight and gross delay per flight, respectively. 
Columns 1–2 report the ordinary least squares (OLS) estimates. Columns 3–4 report the estimated impacts of PM2.5 using the strength of thermal 
inversions (aggregated temperature difference between the second and the first layers) as the instrument for PM2.5. Columns 5–6 report the estimates 
using wind direction as the instrument for PM2.5. Weather controls include 9 temperature bins (<0, 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, 
>35 ◦C), decile bins for precipitation, daily average level of wind speed, water vapor pressure, air pressure, and relative humidity. We also control for 
a set of location-specific and temporal fixed effects, including airport, day-of-week, year and month fixed effects. Standard errors are clustered at the 
airport and region × date level. ***p < 0.01, **p < 0.05, *p < 0.1. 

6 In 2013, the Chinese governments initiated a red-alert system to keep people indoors on days with poor air quality and low visibility. Spe-
cifically, a red alert is issued when air quality index reaches over 300 and is projected to last for at least three consecutive days. Beijing issued the 
first red alert on December 7, 2015. Since then, the majority of red alerts have been issued in prefecture-level cities in smog-plagued regions in 
Northern China. An issued red alert triggers a series of compulsory measures, including limiting car use, shutting down outdoor construction op-
erations, advising schools to close, and even closing some industrial firms. These compulsory measures may also affect flight planning and 
operations. 
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Table 3 
Robustness of IV estimates using wind direction as an instrument.   

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Adding province 
× year FE 

Adding year ×
month FE 

Clustering SD within 
airports and dates 

IDW within 
25 km 

IDW within 
100 km 

Removing flights between 
12 a.m. and 6 a.m. 

Controlling PM2.5 at 
landing airports 

PPML LIML 

PM2.5 (departure 
airports) 

0.114*** 0.120*** 0.119*** 0.120*** 0.0867*** 0.119*** 0.0806* 0.00723*** 0.149*** 
(0.0359) (0.0372) (0.0348) (0.0389) (0.0296) (0.0352) (0.0440) (0.00245) (0.0372) 

PM2.5 (landing 
airports)       

0.00325         
(0.00466)   

Observations 74,122 74,122 74,122 49,160 86,608 74,122 436,740 74,122 74,122 
F-test (KP statistics) 441.7 74.40 32.12 881.1 113.1 64.91 582.9 – 64.91 

Note: This table reports estimated impacts of daily average PM2.5 level on daily average net delay per flight with alternative specifications, data and estimation strategies, using daily wind direction as the 
instrument. Columns 1-2 additionally include province × year FE and year × month FE, respectively. Column 3 clusters the standard errors at the airport and date levels to further address concerns on 
potential network effects of flight delays across regions. Columns 4–5 use a radius of 25 km and 100 km, respectively, to generate distance-weighted pollution and weather data for sample airports. Column 
6 excludes overnight flights between 12 a.m. and 6 a.m. in the sample. Column 7 reports estimates from the bilateral-route specification which includes the daily average PM2.5 level and weather controls 
at both the departing and landing airports. Column 8 uses a Poisson pseudo maximum likelihood (PPML) specification and bootstraps standard errors with 1000 replications, while the endogeneity of 
PM2.5 is addressed by using control function method. Column 9 uses the limited information maximum likelihood (LIML) estimator instead of the 2SLS estimator. Weather controls include 9 temperature 
bins (<0, 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily average level of wind speed, water vapor pressure, air pressure, and relative humidity. We also control 
for a set of location-specific and temporal fixed effects, including airport, day-of-week, year and month fixed effects. Standard errors are clustered at the airport and region × date level except in columns 3 
and 8. ***p < 0.01, **p < 0.05, *p < 0.1. 
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Columns 5 and 6 of Table 2 report estimates from another IV strategy, where we use wind direction as an instrument for daily PM2.5 
concentrations. The large first-stage Kleibergen-Paap F-statistics indicate that wind direction is also a strong predictor of local PM2.5 
concentrations. The second-stage estimates in the two columns are also economically and statistically significant and have similar 
magnitudes. In our preferred specification incorporating weather covariates (in column 6), we find that, holding all else equal, each 1 
μg/m3 increase in daily PM2.5 concentration increases net delay per flight by 0.119 min and gross delay per flight by 0.170 min. These 
coefficient estimates are also remarkably close to those obtained when using inversions as the instrument (column 4). 

The similarity in the estimated coefficients of the PM2.5 variables when using the two IV strategies strengthens our confidence that 
our results yield credible evidence on an arguably causal link between PM2.5 and flight delays. We next translate the point estimates 
displayed in column 6 into changes in flight delays per one-standard-deviation increase in daily PM2.5. We find that, for a one-standard- 
deviation increase in daily PM2.5, net delay per flight increases by 4.5 min (= 37.4*0.119) and gross delay per flight increases by 6.4 
min (= 37.4*0.170). 

Coefficients on weather variables are reported in Appendix Table S2. We find that precipitation exerts a strong impact on flight 
delays and the impact increases with the level of precipitation. Specifically, when the daily precipitation level is above the 90th 
percentile in our sample, net delay per flight is expected to increase by an additional 9.4–9.5 min and gross delay per flight is expected 
to increase by 14.3–14.5 min, holding all else equal. This impact is considerably larger than the effects of other weather controls on 
flight departure delays. 

4.2. Robustness checks 

We conduct a number of robustness checks and placebo exercises to test the sensitivity of our baseline estimates. Because gross 
flight delays do not rule out delays caused by a flight’s previous assignments in other airports, this measure overestimates true delays 
that occurred at the departing airports. Hence, we use net delay per flight as the dependent variable in the remainder of the paper, 
while choosing the specification that incorporates weather covariates. 

Table 3 shows that our result remains robust to different types of fixed effects, clustering strategy, and how airport-level weather 
and pollution variables are generated, with PM2.5 instrumented by wind direction. Columns 1–2 of Table 3 report the coefficient 
estimates by additionally adding province × year FE and year × month FE, respectively. These are intended to control for unobserved 
confounders varying over time in a region, such as air traffic control, seasonality in air travel demand, and so on. We find that, after 
accounting for these FE, the coefficient estimates are nearly identical to our baseline estimate, providing strong evidence that our 
results cannot be explained by regional or seasonal patterns. Column 3 estimates the regression by clustering the standard errors within 
airports and within dates to address the concern that there may exist substantial network effects of flight delays across regions. 
Reassuringly, the estimated PM2.5 impact on net flight delay remains unchanged. 

In the baseline regression, we select a radius of 50 km to generate distance-weighted pollution and weather data for each airport in 
our sample. Columns 4–5 report the coefficient estimates when changing the radius from 50 km to 25 km and 100 km, respectively. The 
coefficient estimates in columns 4–5 are again in agreement with our baseline estimates, suggesting that our baseline estimates can be 
interpreted as the causal effect of each one-unit change in daily PM2.5 on flight delay. 

Some severely delayed overnight flights might have been canceled, and this information is not recorded in the dataset. To ensure 
that our estimates are not driven by canceled overnight flights, we exclude overnight flights between 12 am and 6 am from the analysis. 
Column 6 in Table 3 shows that this yields an estimate similar to the baseline estimate: a one-standard-deviation increase in daily PM2.5 
level leads to an increase of 4.5 min (=37.4*0.119) in net delay per flight. 

Intuitively, pollution and weather conditions at destination airports could also affect flight planning at departing airports and hence 
lead to delay or even cancellations of flights. Therefore, our baseline estimates, which focus only on pollution and weather conditions 
at the departure airports, might have yielded biased estimates of the true effect of pollution on flight delays. Column 7 of Table 3 
extends our baseline specification by incorporating PM2.5 and weather at the landing airports as covariates. This allows us to separately 
identify the effect of PM2.5 at both the departure and destination airports.7 Specifically, we modify equation (1) to the following 
specification: 

Yi,j,t = β1Pi,t + X′

i,tγ1 + β2Pj,t + X ′

j,tγ2 + θt + ci,j + εi,t  

where the dependent variable, Yi,j,t , measures the daily average departure delay for flights departing from airport i and landing at 
airport j. Pj,t and X′

j,t are pollution and weather conditions at airport j on day t. ci,j denotes bilateral-route fixed effects, which can 
control for time-invariant unobserved attributes between a pair of airports, such as geography, which could affect flight delays. Other 
variables are defined as in equation (1). As shown in Column 7 of Table 3, this yields a smaller estimate relative to the baseline result. 
Holding all else equal, each 1 μg/m3 increase in daily PM2.5 concentration at the departure airports is associated with a net delay per 
flight of 0.0806 min, which can be translated into a net flight delay of 3.0 min for each one-standard-deviation increase in daily PM2.5 
level. The estimated coefficient for the PM2.5 variable at the destination airports is positive and statistically insignificant. The 
magnitude of this estimate is also small, suggesting that PM2.5 pollution at the departure airports plays a more important role in 
affecting flight departure delays, relative to the pollution concentrations at the destination airports. 

7 We are indebted to an anonymous referee for suggesting route-level analysis as an alternative empirical design to separate the pollution effects at 
the departure and destination airports. 

X. Chen et al.                                                                                                                                                                                                           



Journal of Environmental Economics and Management 119 (2023) 102810

10

Further, the relationship between pollution and flight delays may be nonlinear. To probe this, we employ the Poisson pseudo 
maximum likelihood (PPML) estimation as an alternative specification to examine the possible nonlinear relationship between 
pollution and flight delays.8 We bootstrap standard errors with 1000 replications and address the endogeneity of PM2.5 by using a 
control function method. Column 8 of Table 3 reports that each additional 1 μg/m3 increase in daily PM2.5 concentration is associated 
with a 0.7% increase in net flight delays, and this estimate is statistically significant at the 1% level. Our baseline estimate shows that 
each 1 μg/m3 increase in daily PM2.5 is associated with an increase in net delay per flight by 0.119 min, which can be translated into a 
percentage increase of 0.88%, with an average net delay per flight of 13.6 min in our sample. Hence, the PPML estimate is again in 
agreement with our baseline result. 

Moreover, we conduct three additional analyses to ensure the robustness of our baseline estimate. First, we estimate equation (1) 
using the limited information maximum likelihood (LIML) estimator, which is approximately median unbiased with weak instruments 
(Staiger and Stock, 1997). Column 9 of Table 3 reports the LIML estimate is similar to those obtained from the 2SLS specification, 
suggesting that our estimate does not suffer from weak instrument bias. Second, we perform a set of placebo tests where we randomly 
generate wind directions for each airport 500 times and use those, rather than the actual wind directions, as instruments in our first 
stage. Appendix Fig. S2 plots the distribution of estimated placebo treatment effects from the 500 random assignments. The dashed line 
in this figure denotes the estimated effect of PM2.5 from the baseline analysis. The p value of the placebo test is 0.02, which rejects the 
null hypothesis of no effect of PM2.5 and provides further support for our identification strategy. Third, we conduct a placebo exercise 
in which we estimate the relationship between pollution and flight delays on irrelevant days. Specifically, we replace the PM2.5 
variable in equations (1) and (3) with one- and three-day leads of pollution level.9 Appendix Table S3 reports that there are no sig-
nificant relationships between the placebo pollution readings and flight delays. 

Columns 1–2 of Appendix Table S4 show that the estimated pollution impact on flight delays remains broadly consistent to our 
baseline result when using the frequency of thermal inversions or a dummy indicator of thermal inversions as the instrument for the 
concentration of PM2.5. In columns 3–10 of Appendix Table S4, we replicate the robustness checks described above, using the strength 
of inversions as an instrument for PM2.5. We find that these estimates are again similar to the baseline estimate (column 4 of Table 2). 

4.3. Extensions 

Testing the validity of the monotonicity assumption: As noted above, the monotonicity assumption is less of a concern for the 
inversion instrument. To investigate the validity of the monotonicity assumption when using wind direction as the instrument for 
PM2.5 we estimate alternative specifications by permitting instruments to vary with the size of wind direction bins and the number of 
monitor groups.10 For ease of comparison, column 1 of Table 4 reports our baseline estimate. Columns 2 and 3 decrease the size of the 
wind direction bins from 90 to 45 and 60◦, respectively. Column 4 increases the size of the wind direction bins to 120◦. Column 5 
decreases the number of monitor groups from 100 to 50. Table 4 demonstrates that our results are generally robust to these variations. 
The stability of the coefficient estimates lends support to the monotonicity assumption for the wind direction instrument. If a violation 
of this assumption exists, it is unlikely to affect our ability to interpret our results as LATE. 

Table 4 
Robustness of IV estimates to instrument choices.   

(1) (2) (3) (4) (5) 

PM2.5 0.119*** 0.108*** 0.0987*** 0.132*** 0.102** 
(0.0352) (0.0271) (0.0218) (0.0367) (0.0446) 

Observations 74,122 74,122 74,122 74,122 74,122 
F-test (KP statistics) 64.91 133.4 245.6 50.50 87.18 
Num. Of pollution monitor groups 100 100 100 100 50 
Size of wind angle bins (degrees) 90 45 60 120 90 

Note: This table reports estimated impacts of daily average PM2.5 level on daily average net delay per flight, using wind direction as the instrument for 
PM2.5. Column 1 reports the baseline estimate that separates pollution monitoring stations into 100 groups and wind angles into 90-degree intervals. 
Columns 2–5 report specifications using alternative numbers of monitor groups and wind angle bins. Weather controls include 9 temperature bins 
(<0, 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily average level of wind speed, water vapor pressure, 
air pressure, and relative humidity. We also control for a set of location-specific and temporal fixed effects, including airport, day-of-week, year and 
month fixed effects. Standard errors are clustered at the airport and region × date level. ***p < 0.01, **p < 0.05, *p < 0.1. 

8 There are two major reasons why we adopt the PPML rather than other non-linear estimation methods. First, due to the presence of many zero 
values in our main dependent variables, traditional log-transformation and log-linear OLS estimations will exclude a fairly large portion of our 
observations (over 20%). PPML can make use of zeros and provide consistent and robust estimates in this case. Second, PPML can be easily 
implemented in our case because it does not require a distributional assumption for the dependent variable (e.g., count data, etc.). More technical 
details can be found in Correia et al. (2020).  

9 Here, we do not replace the PM2.5 variable with lagged pollution levels, because PM2.5 exhibits significant temporal correlations (Chen and Ye, 
2019).  
10 Deryugina et al. (2019) conduct a similar robustness exercise to examine the impacts of air pollution on mortality in the U.S. 
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Testing the validity of the exclusion restriction (independence) assumption: The core of the exclusion restriction assumption 
requires that inversions and wind direction affect flight departure delays only through their influences on pollution concentrations. As 
discussed above, both instruments may be related to other weather events that also affect flight delays. We conduct several analyses to 
demonstrate the validity of the exclusion restriction assumption in our setting. Apart from flexibly controlling for ground-level weather 
conditions, following Sager (2019) we conduct several robustness checks by (i) incorporating all possible interactions of temperature 
and precipitation variables, (ii) incorporating all possible interactions of temperature, precipitation, and wind speed (or humidity) 
variables, (iii) including an additional control for visibility, (iv) excluding days with red alerts from the full sample, (v) excluding days 
with fog or freezing rain from the full sample, and (vi) using a sub-sample with flight conditions recorded as “good” for flight de-
partures, to ensure that the independence assumption is not endangered. Table 5 reports the results, with PM2.5 instrumented by wind 
direction. 

Column 1 of Table 5 includes all possible interaction terms of temperature (5 ◦C bins) and precipitation (decile bins) indicators, in 
addition to the weather covariates included in the baseline specification. Column 2 adds all possible interaction terms of temperature 
(5 ◦C bins), precipitation (decile bins) and deciles of wind speed. Column 3 adds all possible interaction terms of temperature (5 ◦C 
bins), precipitation (decile bins) and deciles of humidity variables.11 We find that the estimated coefficients become slightly smaller 
after controlling for a full set of weather interaction terms but are still consistent with the baseline estimate. 

As noted above, we have hypothesized that air pollution may cause flight delays or cancellations by reducing atmospheric visibility 
and/or impairing cognitive performance. We now provide suggestive evidence about these possible mechanisms. Adding visibility as a 
control helps to disentangle the channels through which PM2.5 affects flight delays. Column 4 of Table 5 shows that adding the daily 
average visibility as a control does not substantially alter our results. The coefficient estimated in column 4 is again statistically 
significant at the 1% level. To examine whether the results are influenced by government-mandated actions, we exclude the days with 
red alerts from the full sample.12 Due to the concern about the network effects of flight delays across regions, we exclude the days from 
the full sample if red alerts were issued in any of the sample cities during the study period. Column 5 of Table 5 reports the coefficient 
estimate from analyzing this sub-sample, which is again similar to our baseline estimate. Together, these findings in columns 4 and 5 
rule out poor visibility as an alternative explanation and suggest that impaired cognitive performance may be the primary factor 
causing flight departure delays. 

In addition, it is noted in the literature that the formation of fog might be linked to thermal inversion events and wind direction/ 
speed, especially when wind blows from a moisture source (Gultepe et al., 2007). To ensure that our estimates are not driven by 

Table 5 
Robustness of IV estimates to weather controls and weather conditions.   

(1) (2) (3) (4) (5) (6) (7) 

Flexible weather 
controls for 
temperature and 
precipitation 

Flexible weather 
controls for 
temperature, 
precipitation, and 
wind speed 

Flexible weather 
controls for 
temperature, 
precipitation, and 
relative humidity 

Adding 
visibility as an 
additional 
control 

Excluding 
“red-alert” 
days 

Excluding 
foggy days 

Flight 
conditions 
recorded 
“good” for 
departures 

PM2.5 0.111*** 0.106*** 0.0972*** 0.183*** 0.106*** 0.0784*** 0.0970*** 
(0.0354) (0.0357) (0.0349) (0.0261) (0.0391) (0.0295) (0.0286) 

Observations 74,122 74,122 74,122 74,122 72,061 51,215 72,575 
F-test (KP 

statistics) 
54.30 61.19 27.41 108.8 64.908 45.62 81.73 

Note: This table reports estimated impacts of daily average PM2.5 level on daily average net delay per flight with alternative weather controls and sub- 
samples, using wind direction as the instrument for PM2.5. Columns 1–3 show the results equivalent to our baseline specification, but with more 
flexible weather controls. Column 1 includes all possible interactions for temperature (5 ◦C bins) and decile bins for precipitation. Column 2 includes 
all possible interactions for temperature (5 ◦C bins), precipitation (decile bins), and wind speed (decile bins). Column 3 includes all possible in-
teractions for temperature for temperature (5 ◦C bins), precipitation (decile bins), and relative humidity (decile bins). Column 4 includes daily 
average airport-level atmospheric visibility as an additional control. Column 5 reports the estimate from a sub-sample that excludes days with red 
alerts. Column 6 reports the estimate from a sub-sample of days with daily total precipitation below 1 mm and relative humidity below 85%. Column 
7 reports the estimate from a sub-sample when flight conditions were recorded “good” for flight departures, which excludes days with heavy rainfall, 
high relative humidity, low visibility and flight controls due to military activities. Weather controls include 9 temperature bins (<0, 0–5, 5–10, 10–15, 
15–20, 20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily average level of wind speed, water vapor pressure, air pressure, and relative 
humidity. We also control for a set of location-specific and temporal fixed effects, including airport, day-of-week, year and month fixed effects. 
Standard errors are clustered at the airport and region × date level. ***p < 0.01, **p < 0.05, *p < 0.1. 

11 Ideally, we will have up to 899 (=9*10*10–1) weather indicators containing interaction terms of temperature, precipitation, and wind speed (or 
humidity) in columns 2 and 3. However, not all possible interaction terms are realized in practice, and the actual numbers of weather controls in the 
two columns are about 870 and 770, respectively.  
12 We are indebted to an anonymous referee for suggesting this analysis. We hand-collected red-alert data from various local Environmental 

Protection Bureau portals and RINGDATA-CND database (https://www.ringdata.com/news/aboutCND). The latter data source covers over 1300 
major Chinese daily newspapers since 2000. In total, the sub-sample with red alerts accounted for 2.8% of the full sample. 
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adverse weather conditions such as fog, we conduct a sub-sample analysis by excluding foggy days from the full sample. Because fog 
occurs with high relative humidity, we drop days on which daily total precipitation is above 1 mm and relative humidity is above 85%. 
Column 6 of Table 5 shows that the coefficient estimate is statistically significantly different from 0 at the 1% level and about 33% 
lower than our baseline estimate. The last column of Table 5 reports the results using a subset of the original data with flight conditions 
recorded “good” for flight departures. That involves excluding days with heavy rainfall, high relative humidity, low visibility and flight 
controls due to military activities. Once again, the coefficient estimate in this column is statistically significant at the 1% level and 
similar in magnitude to the baseline estimate. These results in columns 6 and 7 suggest that weather confounding might result in 
overestimation of the true effect of pollution on flight delays. 

We conduct a similar exercise to test the validity of the exclusion restriction assumption with PM2.5 instrumented by the strength of 
inversions. Combined with the results in Table 5, the results of these additional analyses, reported in Appendix Table S5, strengthen 
our confidence in the validity of the exclusion restriction assumption in our setting. 

4.4. Effects of multiple air pollutants 

One challenge for estimating the adverse impacts of air pollution is that multiple air pollutants, such as SO2, CO, NO2, and PM2.5 are 
often emitted from the same local pollution sources and may be co-transported by the wind from upwind pollution sources. Thus, 
concentrations of these air pollutants are often strongly correlated. The estimated impact of PM2.5 on flight delays may be partially due 
to other pollutants. To probe this, we add SO2, CO, O3, and NO2 progressively as additional controls in our preferred baseline spec-
ification. Similar to our analysis of PM2.5, concentrations of these other pollutants are also treated as endogenous and are instrumented 
by wind direction. 

Table 6 reports that the estimated impacts of PM2.5 on net flight delays are still positive and statistically significant and comparable 
with our baseline estimate. Again, the large first stage Kleibergen-Paap F-statistics indicate that wind direction is a strong predictor of 
local pollution concentrations. With the inclusion of other air pollutants as controls, we estimate that a one-standard-deviation in-
crease in daily PM2.5 concentration is associated with an increase in net delay per flight ranging from 4.7 min to 6.3 min. The estimated 
impacts of SO2 and NO2 are neither economically nor statistically significant. The coefficient estimates for the CO variable are negative 
but are not statistically different from 0. Columns 4 and 5 show that O3 has a puzzling negative effect. However, this finding is in line 
with several prior studies estimating the impacts of air pollution on infant health (Currie and Neidell, 2005), elderly mortality 
(Deryugina et al., 2019), and road safety (Sager, 2019). The consensus that these studies reach is that the negative correlation of O3 
with other air pollutants that affect human health can yield wrong-signed coefficient estimates of the O3 variable. Nonetheless, the 
findings reported in Table 6 suggest that the estimated impacts of air pollution on flight delays are indeed due to PM2.5 and are not 
related to these other pollutants. 

Table 6 
IV Estimates of effect of PM2.5 on net flight delays when controlling for other pollutants.   

(1) (2) (3) (4) (5) 

PM2.5 0.119*** 0.127*** 0.130** 0.165*** 0.169*** 
(0.0352) (0.0402) (0.0555) (0.0512) (0.0579) 

SO2  − 0.0314 − 0.0306 − 0.0438 − 0.0388  
(0.0481) (0.0494) (0.0435) (0.0469) 

CO   − 0.193 − 1.460 − 1.446   
(2.291) (2.327) (2.311) 

O3    − 0.124*** − 0.127***    
(0.0268) (0.0324) 

NO2     − 0.0141     
(0.0664) 

Observations 74,122 74,122 74,122 74,122 74,122 
F-test (KP statistics) 64.91 29.51 118.9 119.1 37.00 

Note: This table reports estimated impacts of daily average PM2.5 and other air pollutants on daily average net delay per flight. All pollutants are 
instrumented by daily wind direction. Weather controls include 9 temperature bins (<0, 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, >35 ◦C), 
decile bins for precipitation, daily average levels of wind speed, water vapor pressure, air pressure, and relative humidity. We also control for a set of 
location-specific and temporal fixed effects, including airport, day-of-week, year and month fixed effects. Standard errors are clustered at the airport 
and region × date level. ***p < 0.01, **p < 0.05, *p < 0.1. 
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4.5. Heterogeneous effects of PM2.5 on flight delays 

In this section, we investigate the heterogeneous effects of PM2.5 pollution on flight delays, with wind direction as the instrument 
for PM2.5. We first assess whether the estimated impact of pollution on delays differs by destination (domestic vs. international flights), 
because airports may give takeoff priority to international flights. We split the full sample into two subsamples and re-estimate 
equations (1) and (3). Holding all else the same, passengers taking domestic flights experienced an additional 4.4 min in net delay 
per flight for each one-standard-deviation increase in daily PM2.5 concentrations. The pollution impact on international flights is not 
statistically significant.13 

In the second investigation, we assess whether the effect differs if a flight departs from its base airport. We do so because airports 
may give extra assistance to flights leaving from home airports in order to prevent departure delays. The regression results displayed in 
Fig. 2 show the persistence of the adverse impacts of pollution on departure delays, suggesting that departing from base airports does 
not alleviate flight delays on polluted days. 

Next, we investigate how the estimated impact of pollution on flight delays differs by travelling distance. We expect that long- 
distance flights would, on average, experience more severe departure delays on polluted days, relative to short-distance flights, 
because airport ground and cabin crews may make additional logistical preparations for long-haul flights (food, drink, etc.), resulting 
in relatively longer-term exposure to PM2.5 pollution. The regression results indicate that the negative impact of pollution on flight 
departure delays increases with travelling distance. Specifically, the impact on flight delays is neither economically nor statistically 
significant when the travelling distance is less than 500 km. For flights travelling between 500 and 2000 km, each one-standard- 
deviation increase in the daily PM2.5 concentration is associated with an additional 2.7 min in net departure delay per flight. The 
delay increases to 4.6 min for flights travelling over 2000 km. This provides suggestive support for the hypothesis that more time spent 
experiencing pollution affects the performance of airline crews. 

We also explore how flight delays differ across types of days. The demand for air travel on weekdays is usually for business, which is 
likely to be fairly inelastic. On the other hand, leisure-oriented air travel is likely to occur on weekends and to be more elastic. Thus, the 
heterogeneity analysis for different types of days can capture whether the pollution impacts on flight delays differ by air travel de-
mand. The regression results in the bottom of Fig. 2 show that the adverse impact of pollution on flight delays does not substantially 
differ for weekdays versus weekends. We also find that cargo flights experience significantly longer delays relative to passenger flights, 
possibly because airports give higher priority to transporting passengers than general cargo. 

Finally, we examine the heterogeneous effects of PM2.5 pollution on flight delays across our sample airports, which differ sub-
stantially by geography, operational efficiency, and systems, among other factors. We divide the full sample into five equal groups 
based on each airport’s annual total number of passengers and estimate equations (1) and (3) for each group, with PM2.5 instrumented 
by wind direction. This generates marginal airport-specific responsiveness of flight delays to a unit increase in PM2.5. Fig. 3 reveals that 

Fig. 2. Heterogeneity analysis. Note: This figure shows the heterogeneous effects of daily average PM2.5 level on daily average net delay per flight, 
using wind direction as the instrument for PM2.5. Each estimate is obtained by estimating equations (1) and (3) and using subsamples. The sub-
samples are generated as follows: (1) considering whether a flight is a domestic flight or international flight; (2) whether a flight departs from its 
base airport; (3) travelling distance; (4) weekdays vs. weekends; and (5) cargo flights. Weather controls include 9 temperature bins (<0, 0–5, 5–10, 
10–15, 15–20, 20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily average level of wind speed, water vapor pressure, air pressure, and 
relative humidity. We also control for a set of location-specific and temporal fixed effects, including airport, day-of-week, year and month fixed 
effects. Red circles indicate point estimates. The supporting regression results of the figure are presented in Appendix Table S5. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

13 The impact on international flights is not precisely estimated due to the small size of the subsample. Appendix Table S6 reports regression results 
for heterogeneity analyses. 
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the adverse impacts of PM2.5 on flight delays are more severe in large airports than those in medium-sized or small airports. Holding all 
else equal, for each 1 μg/m3 increase in daily average PM2.5 concentration, net delay per flight increases by 0.11 min in large airports, 
while the corresponding increases are 0.09 min in medium-sized airports and less than 0.04 min in small airports. 

4.6. Reduced flight delays and economic benefits due to improved air quality 

China released its Air Pollution Prevention and Control Action Plan in 2013. Since then, aggressive actions have been undertaken 
by the Chinese government to improve air quality. Starting in 2013, the nation witnessed significant declines in PM2.5 concentrations 
across the country (Zhang et al., 2019). Based on this assessment of PM2.5 on flight delays, we analyze the contribution of air quality 
improvement to reductions in flight departure delays in 2015–2017. 

To compute the changes in net (or gross) delay per flight for all sample airports due to improved air quality, we multiply the 
estimated coefficients of net (or gross) delay per flight (Column 6 of Table 2) by the levels of air quality improvement during 
2015–2017 in cities where our sample airports are located. For simplicity, the levels of air quality improvement in each city are the 
differences in the mean annual PM2.5 concentrations between 2015 and 2017. When calculating the changes in the national average 
flight delays, we multiply the same coefficient estimates by the changes in national average PM2.5. The observed national average net 
delay per flight increased by 4.64 min in 2017 compared to that in 2015. However, the net delay would have increased by an additional 
0.67 min if the regulation-induced improvement in air quality were absent, indicating a contribution of 13% (≈0.67/(4.64 + 0.67)). 
The contribution of air quality improvement was substantially larger in airports with larger passenger capacity or those located in more 
polluted areas. For instance, the net delay per flight at Beijing Capital Airport was reduced by 2.11 min (or 31%) due to the 
improvement of air quality in 2015–2017, while that at Shanghai Pudong airport, the major aviation hub of East Asia, was reduced by 
1.20 min (or 22%). The contribution of air quality improvement to the reductions in gross flight delay is also significant. In 2017, the 
gross delay per flight at the national level increased by 4.52 min compared to that in 2015, but it would have increased by an additional 
0.97 min in the absence of air quality improvement, resulting in an estimated contribution of 18% (≈0.97/(4.52 + 0.97)). The 
contributions of improved air quality to reductions in flight delays are also considerable at Beijing Capital (27%) and Shanghai Pudong 
(41%) airports. 

To assess the economic benefits from improved air quality, we transform the reduction in gross flight delays due to air quality 

Fig. 3. The heterogeneous effects of PM2.5 on net flight delays across airports. Note: The map shows the airport-specific responsiveness of net delay 
per flight to PM2.5. The 89 airports covered by our sample are equally divided into five groups based on the total number of passengers carried by 
each airport. We obtain airport-specific responsiveness of net flight delays to the change in PM2.5 by estimating equations (1) and (3) for these 
groups, with PM2.5 instrumented by wind direction. 
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improvement into avoided total passenger time loss. Specifically, we multiply gross delay per flight by the number of passengers 
carried by a flight to calculate the total passenger time loss for a flight.14 We aggregate the total passenger time loss of all flights to 
obtain daily total passenger time at the airport level and then compute daily total passenger time loss per flight by dividing daily total 
passenger time by daily total number of flights. 

To study the effect of PM2.5 on daily total passenger time loss per flight, we estimate the same version of equations (1) and (3) using 
daily total passenger time loss per flight at each airport as the dependent variable. Appendix Table S7 reports our IV estimates of the 
causal effect of daily PM2.5 on daily total passenger time loss per flight. We find that each 1 μg/m3 increase in daily average PM2.5 
concentration is associated with an increase of 21.5–27.5 min of total passenger time loss per flight (p < 0.01). We multiply the 
coefficient estimates by the total number of flights at each airport in 2017 and the changes in PM2.5 during the 2015–2017 period, 
summed over all sample airports, to calculate the total changes in avoided passenger time loss due to air quality improvement. 

Our back-of-the-envelope calculations indicate that reduced flight delays stemming from air quality improvement avoided 
approximately 3.5–4.5 million hours of passenger time loss in our sample cities in 2017. If the estimated relationship between flight 
delays and air pollution can be extended to other flights outside the cities in our sample, the total avoided passenger time loss for all 
cities with airports in China would be approximately 10.7–13.6 million hours in 2017.15 

Next, we use average income to value passenger time. The average annual income in our sample cities in 2017 was CNY 65,400, 
with the highest in Beijing (CNY 134,994) and the lowest in Yichun (CNY 38,713). Assuming 250 working days per year and eight 
working hours per day, the average income in our sample cities is equivalent to CNY 34.3 per hour. We multiply the avoided passenger 
time loss for each airport by city-specific hourly wages to compute the economic benefit. We estimate that the air quality improvement 
in 2015–2017 may have generated a gain of CNY 210–270 million (equivalent to US $32-$41 million) for our sample cities in 2017, or 
CNY 350–448 million (equivalent to US $54–69 million) for all cities with airports in China. 

These benefit calculations are approximations. When estimating the national total avoided passenger time loss due to air quality 
improvement, we assume that the estimated relationship between pollution and flight delays is applicable to other flights outside of 
our sample, which might not be as accurate as expected. We have also used the average income to value passenger time. To the extent 
that business travelers earn higher income, we may have greatly underestimated the true value of passenger time and the total benefit 
of the avoided passenger time loss due to improved air quality. Nonetheless, our calculations suggest that the economic benefit of 
avoided flight delays due to air quality improvement is considerable. 

5. Conclusions and discussion 

Our analysis shows that daily variations in ground-level air pollution significantly affect flight delays. Specifically, using two 
separate identification approaches, we find that a one-standard-deviation increase in the PM2.5 concentration was associated with 
about 6.4 min of gross delay per flight and 4.5 min of net delay per flight, which accounted for 27% and 19%, respectively, of China’s 
national average departure delay per flight of 24 min in 2017 (Civil Aviation Administration of China, 2018). These results are robust 
to a wide range of variations in specifications, data and estimation strategies. Encouragingly, we also find that observed decreases in 
PM2.5 concentrations attributable to China’s Air Pollution Prevention and Control Action Plan avoided 13–18% of the increase in 
national average flight delays in 2017. We estimate that the economic benefit from avoided passenger time losses stemming from the 
reduction in PM2.5 in China was about US $54-$69 million in 2017 alone. 

Our findings are subject to two major limitations. First, as noted above, our sample only covers flights departing from or arriving at 
airports in northern China. Thus, estimated departure delays for the airports located outside of northern China are not estimated. 
Second, airports or airlines may have unobserved optimization or management strategies to reduce flight delays, leading to a possible 
underestimation of departure delays solely due to air pollution. Hence, our estimates should be interpreted cautiously as the lower 
bound of the true pollution impacts on flight delays. 

When taken together, the robust correlation between flight departure delays and air pollution demonstrates a substantial impact of 
air pollution that has been neglected by current estimates of air pollution costs. Our study therefore further justifies China’s adoption of 
stringent policies to improve air quality. The findings of our study also suggest that airports, airlines, and airport partners should take 
aggressive measures to reduce departure delays on polluted days, especially for passengers travelling long distances and departing 
from large airports. It may be necessary to enhance the air transportation system using high-tech monitoring technology, expanding 
the runway throughput, or increasing the number of screening officers at passenger screening checkpoints when PM2.5 levels are high. 
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Appendix Table S1 
First stage – Effect of thermal inversions on PM2.5 pollution   

(1) (2) 

Inversion strength (◦C) 0.364*** 0.314***  
(0.0704) (0.0499) 

Observations 74,122 74,122 
F-test (KP statistics) 26.78 39.67 
Weather controls – YES 

Note: This table provides estimates of the effect of the strength of thermal 
inversions, which is defined as the aggregated temperature difference between 
the second layer (925 hPa, about 320 m) and the first layer (1000 hPa, about 
110 m), on the daily average PM2.5 concentrations. Weather controls include 9 
temperature bins (<0, 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, 
>35 ◦C), decile bins for precipitation, daily average level of wind speed, water 
vapor pressure, air pressure, and relative humidity. We also control for a set of 
location-specific and temporal fixed effects, including airport, day-of-week, 
year and month fixed effects. Standard errors are clustered at the airport 
and region × date level. ***p < 0.01, **p < 0.05, *p < 0.1.  

Appendix Table S2 
Effects of pollution and weather on flight delays   

(1) (2) (3) (4) 

Net delay per flight Gross delay per flight 

2SLS (Inversions) 2SLS (Wind direction) 2SLS (Inversions) 2SLS (Wind direction) 

PM2.5 0.110*** 0.119*** 0.159** 0.170** 
(0.0398) (0.0352) (0.0694) (0.0671) 

Temperature Bins: 
<0 ◦C – – – – 

– – – – 
0–5 ◦C − 2.775*** − 2.863*** − 5.621*** − 5.741*** 

(0.800) (0.827) (1.459) (1.479) 
5–10 ◦C − 3.415*** − 3.477*** − 7.121*** − 7.206*** 

(0.924) (0.929) (1.610) (1.631) 
10–15 ◦C − 3.784*** − 3.849*** − 8.927*** − 9.016*** 

(1.121) (1.094) (1.955) (1.927) 
15–20 ◦C − 5.180*** − 5.280*** − 10.17*** − 10.31*** 

(1.400) (1.296) (2.479) (2.388) 
20–25 ◦C − 6.532*** − 6.674*** − 12.14*** − 12.34*** 

(1.763) (1.587) (3.138) (2.959) 
25–30 ◦C − 5.989*** − 6.197*** − 11.59*** − 11.88*** 

(2.192) (1.915) (3.815) (3.470) 
30–35 ◦C − 2.198 − 2.442 − 5.674 − 6.007 

(2.433) (2.260) (4.571) (4.220) 
>35 ◦C − 16.93*** − 17.26*** − 14.46* − 14.92* 

(5.331) (4.892) (8.153) (7.728) 
Precipitation decile bins: 
Zero Precipitation – – – – 

– – – – 
Bottom 10% 1.455*** 1.505*** 0.859 0.927 

(0.544) (0.498) (0.996) (0.891) 
10–20 Percentile 0.690 0.744 − 0.0144 0.0593 

(0.457) (0.512) (0.856) (0.887) 
20–30 Percentile 1.249** 1.307** 0.515 0.594 

(0.623) (0.618) (0.995) (0.964) 
30–40 Percentile 1.123* 1.195* 0.343 0.442 

(continued on next page) 
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Appendix Table S2 (continued )  

(1) (2) (3) (4) 

Net delay per flight Gross delay per flight 

2SLS (Inversions) 2SLS (Wind direction) 2SLS (Inversions) 2SLS (Wind direction) 

(0.669) (0.608) (1.035) (0.955) 
40–50 Percentile 1.485** 1.554** 1.615 1.709 

(0.622) (0.599) (1.157) (1.053) 
50–60 Percentile 2.970*** 3.055*** 3.461*** 3.577*** 

(0.743) (0.736) (1.298) (1.220) 
60–70 Percentile 3.026*** 3.117*** 2.884** 3.010** 

(0.716) (0.695) (1.330) (1.217) 
70–80 Percentile 3.286*** 3.382*** 4.040*** 4.173*** 

(0.874) (0.878) (1.441) (1.351) 
80–90 Percentile 5.040*** 5.133*** 6.128*** 6.256*** 

(1.098) (1.008) (1.798) (1.604) 
Top 10 Percentile 9.442*** 9.546*** 14.34*** 14.49*** 

(1.479) (1.322) (2.526) (2.259) 
Wind Speed 0.693*** 0.729*** 1.657*** 1.707*** 

(0.238) (0.232) (0.440) (0.445) 
Water Vapor Pressure 0.237** 0.240*** 0.435** 0.440*** 

(0.0923) (0.0856) (0.173) (0.167) 
Air Pressure 0.00851 0.00988 0.000664 0.00254 

(0.0149) (0.0158) (0.0258) (0.0273) 
Relative Humidity − 0.00939 − 0.0129 0.0596 0.0547 

(0.0271) (0.0196) (0.0471) (0.0369) 
Observations 74,122 74,122 74,122 74,122 
F-test (KP Statistics) 39.67 64.91 39.67 64.91 

Note: This table reports the estimated impacts of daily average PM2.5 level and weather on daily average net delay per flight and gross delay per flight. 
Columns 1 and 3 report results using the strength of thermal inversions (aggregated temperature difference between the second and the first layers) as 
the instrument variable. Columns 2 and 4 report the results using daily wind direction as the instrument variables. Weather controls include 9 
temperature bins (<0, 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily average level of wind speed, water 
vapor pressure, air pressure, and relative humidity. We also control for a set of location-specific and temporal fixed effects, including airport, day-of- 
week, year and month fixed effects. Standard errors are clustered at the airport and region × date level. ***p < 0.01, **p < 0.05, *p < 0.1.  

Appendix Table S3 
Robustness – Results with additional leads of PM2.5   

(1) (2) (3) 

2SLS (Wind Direction) 2SLS (Wind Direction) 2SLS (Wind Direction) 

PM2.5 0.119*** 0.120*** 0.0995*** 
(0.0352) (0.0401) (0.0267) 

PM2.5 one day from now  − 0.00726   
(0.0229)  

PM2.5 three days from now   0.0297   
(0.0263) 

Observations 74,122 70,228 70,480 
F-test (KP statistics) 64.91 8.857 2.430 

Note: This table reports the estimated impacts of daily average PM2.5 on daily average net delay per flight, with additional leads of PM2.5 
instrumented by corresponding leads of daily wind directions. Weather controls include 9 temperature bins (<0, 0–5, 5–10, 10–15, 15–20, 
20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily average level of wind speed, water vapor pressure, air pressure, relative 
humidity, and corresponding leads of weather controls. We also control for a set of location-specific and temporal fixed effects, including airport, 
day-of-week, year and month fixed effects. Standard errors are clustered at the airport and region × date level. 
***p < 0.01, **p < 0.05, *p < 0.1.  

Appendix Table S4 
Robustness of IV estimates using inversions as an instrument   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Dummy 
indicator 
of 
inversion 
as 
instrument 

Frequency 
of 
inversion 
as 
instrument 

Adding 
province 
× year 
FE 

Adding 
year ×
month 
FE 

Clustering 
SD within 
airports 
and dates 

IDW 
within 
25 km 

IDW 
within 
100 km 

Removing 
flights 
between 
12 a.m. 
and 6 a.m. 

Controlling 
PM2.5 at 
landing 
airports 

PPML 

PM2.5 (departure 
airports) 

0.0893* 0.0714* 0.118*** 0.110*** 0.110*** 0.117** 0.106*** 0.110*** 0.0585* 0.00676*** 
(0.0492) (0.0373) (0.0388) (0.0393) (0.0397) (0.0487) (0.0356) (0.0398) (0.0306) (0.00245)         

0.00540  

(continued on next page) 
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Appendix Table S4 (continued )  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Dummy 
indicator 
of 
inversion 
as 
instrument 

Frequency 
of 
inversion 
as 
instrument 

Adding 
province 
× year 
FE 

Adding 
year ×
month 
FE 

Clustering 
SD within 
airports 
and dates 

IDW 
within 
25 km 

IDW 
within 
100 km 

Removing 
flights 
between 
12 a.m. 
and 6 a.m. 

Controlling 
PM2.5 at 
landing 
airports 

PPML 

PM2.5 (landing 
airports)         

(0.00371)  

Observations 74,122 74,122 74,122 74,122 74,122 49,160 86,608 74,122 436,743 74,122 
First stage F-test 

(KP 
statistics) 

39.03 38.01 40.47 38.92 37.41 21.12 50.80 39.67 21.87 – 

Note: This table reports estimated impacts of daily average PM2.5 on daily average net delay per flight with alternative model specifications, data and 
estimation strategies, using thermal inversion as the instrument. Columns 1–2 report the IV estimates using a dummy indicator of thermal inversions 
and the frequency of thermal inversions (count of hours with thermal-inversion events), respectively, as the instrument variable. Columns 3–10 use 
the strength of thermal inversions as the instrument. Columns 3-4 additionally include province × year and year × month FE, respectively. Column 5 
clusters the standard errors at the airport and date levels to further address concerns on potential network effects of flight delays across regions. 
Columns 6–7 use a radius of 25 km and 100 km, respectively, to generate distance-weighted pollution and weather data for sample airports. Column 8 
excludes overnight flights between 12 a.m. and 6 a.m. in the sample. Column 9 reports estimates from the bilateral-route specification which includes 
the daily average PM2.5 level and weather controls at both the departing and landing airports. Column 10 uses a PPML specification and bootstraps 
standard errors with 1000 replications, while the endogeneity of PM2.5 is addressed by using control function method. Weather controls include 9 
temperature bins (<0, 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily average level of wind speed, water 
vapor pressure, air pressure, and relative humidity. We also control for a set of location-specific and temporal fixed effects, including airport, day-of- 
week, year and month fixed effects. Standard errors are clustered at the airport and region × date level except in columns 5 and 10. ***p < 0.01, **p 
< 0.05, *p < 0.1.  

Appendix 
Table S5Robustness of IV estimates to weather controls and weather conditions with inversions as an instrument   

(1) (2) (3) (4) (5) (6) (7) 

Flexible weather 
controls for 
temperature and 
precipitation 

Flexible weather 
controls for 
temperature, 
precipitation, and 
wind speed 

Flexible weather 
controls for 
temperature, 
precipitation, and 
relative humidity 

Adding 
visibility as an 
additional 
control 

Excluding 
“red-alert” 
days 

Excluding 
foggy days 

Flight 
conditions 
recorded 
“good” for 
departures 

PM2.5 0.119*** 0.121*** 0.0963*** 0.150*** 0.119** 0.0575** 0.0825** 
(0.0403) (0.0425) (0.0365) (0.0526) (0.0480) (0.0272) (0.0338) 

Observations 74,122 74,122 74,122 74,122 72,061 51,215 72,575 
F-test (KP 

statistics) 
41.99 44.14 59.67 26.59 34.72 45.39 38.92 

Note: This table reports estimated impacts of daily average PM2.5 level on daily average net delay per flight with alternative weather controls and sub- 
samples, using the strength of thermal inversion as the instrument for PM2.5. Columns 1–3 show the results equivalent to our baseline specification, 
but with more flexible weather controls. Column 1 includes all possible interactions for temperature (5 ◦C bins) and precipitation (decile bins). 
Column 2 includes all possible interactions for temperature (5 ◦C bins), precipitation (decile bins), and wind speed (decile bins). Column 3 includes all 
possible interactions for temperature (5 ◦C bins), precipitation (decile bins), and relative humidity (decile bins). Column 4 includes daily average 
airport-level atmospheric visibility as an additional control. Column 5 reports the estimate from a sub-sample that excludes days with red alerts. 
Column 6 reports the estimate from a sub-sample of days with daily total precipitation below 1 mm, relative humidity below 85%. Column 7 reports 
the estimate from a sub-sample when flight conditions were recorded “good” for flight departures, which excludes days with heavy rainfall, high 
relative humidity, low visibility, and flight controls due to military activities. Weather controls for columns 3–5 include 9 temperature bins (<0, 0–5, 
5–10, 10–15, 15–20, 20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily average level of wind speed, water vapor pressure, air 
pressure, and relative humidity. We also control for a set of location-specific and temporal fixed effects, including airport, day-of-week, year and 
month fixed effects. Standard errors are clustered at the airport and region × date level. ***p < 0.01, **p < 0.05, *p < 0.1.  
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Appendix Table S6 
Heterogeneity by subsets of sample   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Domestic 
Flights 

International 
Flights 

Flights 
departing 
from base 
airports 

Flights 
departing 
from non- 
base airports 

Travel 
distance 
(≤ 500 
km) 

Travel 
distance 
(500–2000 
km) 

Travel 
distance 
(≥ 2000 
km) 

Cargo 
Flights 

Weekdays Weekends 

PM2.5 0.118*** 0.271 0.140** 0.108*** 0.0138 0.0735** 0.123* 0.378* 0.119*** 0.0952** 
(0.0355) (0.236) (0.0506) (0.0333) (0.0328) (0.0290) (0.0642) (0.208) (0.0329) (0.0431) 

Observations 74,121 4139 16,853 74,113 21,287 108,113 14,204 9308 53,001 21,119 
F-test (KP statistics) 66.33 0.767 14.96 64.49 7.690 72.53 93.43 90.65 66.26 18.56 

Note: This table reports estimated impacts of daily average PM2.5 level on daily average net delay per flight using subsets of domestic/international 
flights (columns 1–2), subsets of flights departing from base/non-base airports (columns 3–4), subsets of flights with different travelling distances 
(columns 5–7), subset of cargo flights (column 8) and subsets of weekdays and weekends (columns 9–10). Wind direction is used as the instrument for 
PM2.5. Weather controls include 9 temperature bins (<0, 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily 
average level of wind speed, water vapor pressure, air pressure, and relative humidity. We also control for a set of location-specific and temporal fixed 
effects, including airport, day-of-week, year and month fixed effects. Standard errors are clustered at the airport and region × date level. ***p < 0.01, 
**p < 0.05, *p < 0.1.  

Appendix Table S7 
Estimates of the causal effects of PM2.5 on total passenger time loss per flight   

(1) (2) 

Total passenger time loss per flight (Wind Direction) Total passenger time loss per flight (Strength of Thermal Inversions) 

PM2.5 21.54*** 27.51*** 
(7.628) (10.24) 

Observations 74,122 74,122 
F-test (KP statistics) 66.34 39.67 

Note: This table reports the estimated impacts of daily average PM2.5 level on daily total passenger time loss per flight, which is computed using gross 
delay per flight. In column 1, PM2.5 is instrumented using wind direction. In column 2, PM2.5 is instrumented using strength of thermal inversions. 
Weather controls include 9 temperature bins (<0, 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, >35 ◦C), decile bins for precipitation, daily average 
level of wind speed, water vapor pressure, air pressure, and relative humidity. We also control for a set of location-specific and temporal fixed effects, 
including airport, day-of-week, year and month fixed effects. Standard errors are clustered at the airport and region × date level. ***p < 0.01, **p <
0.05, *p < 0.1.  

Appendix Fig. S1. The percentage of flight takeoffs from the rest of China and foreign countries to North China and daily average net flight delays 
for airports covered by our sample  
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Appendix Fig. S2. Distribution of estimated coefficients from the permutation placebo tests 
Note: This figure reports IV estimates of our baseline specification when using randomly generated placebo instruments. Specifically, we randomly 
assign the daily wind direction for each airport and construct placebo treatment analysis for the sample of individual airports as that in the baseline 
analysis. These histograms display the distribution of placebo treatment effects from 500 random assignments. The dashed line shows the estimated 
treatment from the baseline analysis. The p value of the permutation test is the proportion of placebo estimates that are equal to or larger in absolute 
value than the corresponding estimate from the baseline analysis. 
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